Abstract

Self-starting self-pulsing dynamics at the cavity free-spectral-range frequency were observed in intracavity second-harmonic generation of a diode end-pumped Nd:YLF ring laser containing a periodically-poled KTiOPO4 (ppKTP) nonlinear crystal. Although the unidirectional laser was designed for continuous-wave (cw) single-frequency operation, with a resonator set at the middle of its stability range, partial Kerr-lens mode-locking (KLM) arose spontaneously once the ppKTP was inserted. This ultrafast dynamics along with a strong spectral gain broadening, not observed with any birefringent nonlinear doubler, is associated to the finite bandwidth of the quasi-phase-matched crystal with respect to the laser gain bandwidth, leading to giant cascaded Kerr-lensing effects when the ppKTP temperature is detuned from perfect quasi-phase-matching either in the self-focusing or defocusing sides. While under partial KLM operation the laser delivered only ~0.14W of broadband red output power, single-frequency operation could be only achieved by using an intracavity etalon with a suitable partial reflectivity (R≥25%), leading to an optimally (~100% efficiency) out-coupled 1.4W red power at 660.5nm, as much as the fundamental 1321nm power that could be extracted from the unidirectional laser using an optimal T = 2% output coupler.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ogilvy, M. J. Withford, P. Dekker, and J. A. Piper, “Efficient diode double-end-pumped Nd:YVO4 laser operating at 1342nm,” Opt. Express 11(19), 2411–2415 (2003).
    [CrossRef] [PubMed]
  2. Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG Laser,” IEEE J. Quantum Electron. 35(11), 1737–1740 (1999).
    [CrossRef]
  3. A. Agnesi, A. Guandalini, G. Reali, S. Dell’Acqua, and G. Piccinno, “High-brightness 2.4-W continuous-wave Nd:GdVO4 laser at 670 nm,” Opt. Lett. 29(1), 56–58 (2004).
    [CrossRef] [PubMed]
  4. A.-Y. Yao, W. Hou, Y. Bi, A.-C. Geng, X.-C. Lin, Y.-P. Kong, D.-F. Cui, L.-A. Wu, and Z.-Y. Xu, “High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd:YVO4 laser,” Appl. Opt. 44(33), 7156–7160 (2005).
    [CrossRef] [PubMed]
  5. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
    [CrossRef]
  6. Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).
  7. R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J.-J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
    [CrossRef] [PubMed]
  8. R. Sarrouf, T. Badr, and J.-J. Zondy, “Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3μm Nd:YLiF4 lasers,” J. Opt. A, Pure Appl. Opt. 10(10), 104011 (2008).
    [CrossRef]
  9. F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, and J.-J. Zondy, “Tunable single-frequency Nd:YVO4 /BiB3O6 ring laser at 671nm,” IEEE J. Quantum Electron. (to be published).
  10. A. Agnesi, G. C. Reali, and P. G. Gobbi, “430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34(7), 1297–1300 (1998).
    [CrossRef]
  11. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser,” Opt. Lett. 21(12), 875–877 (1996).
    [CrossRef] [PubMed]
  12. Y. Zheng, H. Lu, F. Li, K. Zhang, and K. Peng, “Four watt long-term stable intracavity frequency-doubling Nd:YVO(4) laser of single-frequency operation pumped by a fiber-coupled laser diode,” Appl. Opt. 46(22), 5336–5339 (2007).
    [CrossRef] [PubMed]
  13. R. Polloni and O. Svelto, “Optimum coupling for intracavity second harmonic generation,” IEEE J. Quantum Electron. 4(9), 528–530 (1968).
    [CrossRef]
  14. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
    [CrossRef]
  15. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20(7), 746–748 (1995).
    [CrossRef] [PubMed]
  16. M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode-locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
    [CrossRef]
  17. K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
    [CrossRef]
  18. K. A. Stankov, “Mode locking by a frequency-doubling crystal: generation of transform-limited ultrashort light pulses,” Opt. Lett. 14(7), 359–361 (1989).
    [CrossRef] [PubMed]
  19. M. B. Danailov, G. Cerullo, V. Magni, D. Segala, and S. De Silvestri, “Nonlinear mirror mode locking of a cw Nd:YLF laser,” Opt. Lett. 19(11), 792–794 (1994).
    [CrossRef] [PubMed]
  20. Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4,” Appl. Phys. B 72, 395–397 (2001).
  21. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13(14), 5270–5278 (2005).
    [CrossRef] [PubMed]
  22. R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
    [CrossRef] [PubMed]
  23. G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18(1), 13–15 (1993).
    [CrossRef] [PubMed]
  24. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
    [CrossRef] [PubMed]
  25. T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17(18), 1292–1294 (1992).
    [CrossRef] [PubMed]
  26. G. P. A. Malcolm and A. I. Ferguson, “Self-mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 16(24), 1967–1969 (1991).
    [CrossRef] [PubMed]
  27. G. Cerullo, S. D. Silvestri, and V. Magni, “Self-starting Kerr-lens mode locking of a Ti:sapphire laser,” Opt. Lett. 19(14), 1040–1042 (1994).
    [CrossRef] [PubMed]
  28. J. R. Lincoln and A. I. Ferguson, “All-solid-state self-mode locking of a Nd:YLF laser,” Opt. Lett. 19(24), 2119–2121 (1994).
    [CrossRef] [PubMed]
  29. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
    [CrossRef] [PubMed]
  30. W. S. Pelouch, P. E. Powers, and C. L. Tang, “Self-starting mode-locked ring-cavity Ti:sapphire laser,” Opt. Lett. 17(22), 1581–1583 (1992).
    [CrossRef] [PubMed]
  31. A. Agnesi, “Kerr-lens modelocking of solid-state lasers and unidirectional cavities,” IEEE J. Quantum Electron. 30(4), 1115–1121 (1994).
    [CrossRef]
  32. D. R. Heatley, A. M. Dunlop, and W. J. Firth, “Kerr lens effects in a ring resonator with an aperture: mode locking and unidirectional operation,” Opt. Lett. 18(2), 170–172 (1993).
    [CrossRef] [PubMed]
  33. S. Greenstein and M. Rosenbluh, “The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation,” Opt. Commun. 248(1-3), 241–248 (2005).
    [CrossRef]
  34. S. Greenstein and M. Rosenbluh, “Dynamics of cw intra-cavity second-harmonic generation by PPKTP,” Opt. Commun. 238(4-6), 319–327 (2004).
    [CrossRef]
  35. M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO(4) crystal,” Opt. Lett. 24(4), 205–207 (1999).
    [CrossRef]
  36. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3(9), 1175–1180 (1986).
    [CrossRef]
  37. A. Sennaroglu, “Broadly tunable continuous-wave orange-red source based on intracavity-doubled Cr4+:forsterite laser,” Appl. Opt. 41(21), 4356–4359 (2002).
    [CrossRef] [PubMed]
  38. R. Fluck, G. Zhang, U. Keller, K. J. Weingarten, and M. Moser, “Diode-pumped passively mode-locked 1.3-microm Nd:YVO(4) and Nd:YLF lasers by use of semiconductor saturable absorbers,” Opt. Lett. 21(17), 1378–1380 (1996).
    [CrossRef] [PubMed]
  39. H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, “Low-loss 1.3-µm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers,” Opt. Lett. 27(23), 2124–2126 (2002).
    [CrossRef]
  40. V. Liverini, S. Schön, R. Grange, M. Haiml, S. C. Zeller and U. Keller, “A low-loss GaInNAs SESAM mode-locking a 1.3-μm,” paper CThV7, CLEO 2004 Technical Digest (OSA).
  41. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-Transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
    [CrossRef]
  42. K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk,” Appl. Phys. Lett. 74(7), 914–916 (1999).
    [CrossRef]
  43. J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second-harmonic generation with Gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).
    [CrossRef]
  44. K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Self-suppression of axial mode hopping by intracavity second-harmonic generation,” Opt. Lett. 22(6), 375–377 (1997).
    [CrossRef] [PubMed]
  45. P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
    [CrossRef]
  46. C. Sibilia, A. Re, E. Fazio, and M. Bertolotti, “Cascading effect on second-harmonic generation in a ring cavity,” J. Opt. Soc. Am. B 13(6), 1151–1159 (1996).
    [CrossRef]
  47. P.-A. Belanger and C. Pare, “Self-focusing of Gaussian beams: an alternate derivation,” Appl. Opt. 22(9), 1293–1295 (1983).
    [CrossRef] [PubMed]
  48. J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly-resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B 14(10), 2481–2497 (1997).
    [CrossRef]

2008 (3)

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
[CrossRef]

R. Sarrouf, T. Badr, and J.-J. Zondy, “Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3μm Nd:YLiF4 lasers,” J. Opt. A, Pure Appl. Opt. 10(10), 104011 (2008).
[CrossRef]

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[CrossRef]

2007 (2)

2005 (3)

2004 (3)

S. Greenstein and M. Rosenbluh, “Dynamics of cw intra-cavity second-harmonic generation by PPKTP,” Opt. Commun. 238(4-6), 319–327 (2004).
[CrossRef]

A. Agnesi, A. Guandalini, G. Reali, S. Dell’Acqua, and G. Piccinno, “High-brightness 2.4-W continuous-wave Nd:GdVO4 laser at 670 nm,” Opt. Lett. 29(1), 56–58 (2004).
[CrossRef] [PubMed]

Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).

2003 (1)

2002 (2)

2001 (1)

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4,” Appl. Phys. B 72, 395–397 (2001).

1999 (4)

M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO(4) crystal,” Opt. Lett. 24(4), 205–207 (1999).
[CrossRef]

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG Laser,” IEEE J. Quantum Electron. 35(11), 1737–1740 (1999).
[CrossRef]

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-Transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[CrossRef]

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[CrossRef]

1998 (2)

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34(7), 1297–1300 (1998).
[CrossRef]

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode-locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
[CrossRef]

1997 (2)

1996 (3)

1995 (1)

1994 (4)

1993 (3)

1992 (3)

1991 (3)

1989 (1)

1988 (1)

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[CrossRef]

1986 (1)

1983 (1)

1970 (1)

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

1968 (1)

R. Polloni and O. Svelto, “Optimum coupling for intracavity second harmonic generation,” IEEE J. Quantum Electron. 4(9), 528–530 (1968).
[CrossRef]

Acef, O.

Agnesi, A.

A. Agnesi, A. Guandalini, G. Reali, S. Dell’Acqua, and G. Piccinno, “High-brightness 2.4-W continuous-wave Nd:GdVO4 laser at 670 nm,” Opt. Lett. 29(1), 56–58 (2004).
[CrossRef] [PubMed]

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34(7), 1297–1300 (1998).
[CrossRef]

A. Agnesi, “Kerr-lens modelocking of solid-state lasers and unidirectional cavities,” IEEE J. Quantum Electron. 30(4), 1115–1121 (1994).
[CrossRef]

Arie, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[CrossRef]

Assanto, G.

Badr, T.

R. Sarrouf, T. Badr, and J.-J. Zondy, “Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3μm Nd:YLiF4 lasers,” J. Opt. A, Pure Appl. Opt. 10(10), 104011 (2008).
[CrossRef]

R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J.-J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
[CrossRef] [PubMed]

Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).

F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, and J.-J. Zondy, “Tunable single-frequency Nd:YVO4 /BiB3O6 ring laser at 671nm,” IEEE J. Quantum Electron. (to be published).

Baer, T.

Balembois, F.

Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).

Belanger, P.-A.

Bertolotti, M.

Bi, Y.

Brabec, T.

Burns, D.

Calvez, S.

Camargo, F. A.

F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, and J.-J. Zondy, “Tunable single-frequency Nd:YVO4 /BiB3O6 ring laser at 671nm,” IEEE J. Quantum Electron. (to be published).

Cancio, P.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[CrossRef]

Cerullo, G.

Chen, Y. F.

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4,” Appl. Phys. B 72, 395–397 (2001).

Chen, Z. Q.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
[CrossRef]

Clarkson, W. A.

Cui, D.-F.

Curley, P. F.

Czeranowsky, C.

Danailov, M. B.

Dawson, M. D.

De Natale, P.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[CrossRef]

De Silvestri, S.

Dekker, P.

Dell’Acqua, S.

DeSalvo, R.

Dunlop, A. M.

Fazio, E.

Ferguson, A. I.

Firth, W. J.

Fluck, R.

Fradkin, K.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[CrossRef]

Friel, G. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-Transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[CrossRef]

Fujikawa, S.

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG Laser,” IEEE J. Quantum Electron. 35(11), 1737–1740 (1999).
[CrossRef]

Fujimoto, J. G.

Galli, I.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[CrossRef]

Geng, A.-C.

Georges, P.

Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).

Giusfredi, G.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[CrossRef]

Gobbi, P. G.

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34(7), 1297–1300 (1998).
[CrossRef]

Greenstein, S.

S. Greenstein and M. Rosenbluh, “The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation,” Opt. Commun. 248(1-3), 241–248 (2005).
[CrossRef]

S. Greenstein and M. Rosenbluh, “Dynamics of cw intra-cavity second-harmonic generation by PPKTP,” Opt. Commun. 238(4-6), 319–327 (2004).
[CrossRef]

Guandalini, A.

Hagan, D. J.

Hanna, D. C.

Hardman, P. J.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-Transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[CrossRef]

Haus, H. A.

Heatley, D. R.

Himbert, M. E.

Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).

Holmgren, S. J.

Hou, W.

Huang, C. H.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
[CrossRef]

Huang, L. X.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
[CrossRef]

Huber, G.

Inoue, Y.

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG Laser,” IEEE J. Quantum Electron. 35(11), 1737–1740 (1999).
[CrossRef]

Ippen, E. P.

Jacobson, J.

Jethwa, J.

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[CrossRef]

Jouhti, T.

Juncar, P.

Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).

Karlsson, H.

Kean, P. N.

Keller, U.

Kellner, T.

Kojima, T.

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG Laser,” IEEE J. Quantum Electron. 35(11), 1737–1740 (1999).
[CrossRef]

Kong, Y.-P.

Konno, S.

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG Laser,” IEEE J. Quantum Electron. 35(11), 1737–1740 (1999).
[CrossRef]

Krausz, F.

Laurell, F.

Li, F.

Lin, X.-C.

Lincoln, J. R.

Louyer, Y.

Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).

Lu, H.

Macaluso, R.

Magni, V.

Malcolm, G. P. A.

Martin, K. I.

Mazzotti, D.

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[CrossRef]

Monguzzi, A.

Moser, M.

Ogilvy, H.

Pare, C.

Pasiskevicius, V.

Pelouch, W. S.

Peng, K.

Pessa, M.

Piccinno, G.

Pierrou, M.

Piper, J. A.

Plimmer, M. D.

Y. Louyer, P. Juncar, M. D. Plimmer, T. Badr, F. Balembois, P. Georges, and M. E. Himbert, “Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity,” J. Opt. Soc. Am. B 43, 1773–1776 (2004).

Pollnau, M.

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-Transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[CrossRef]

Polloni, R.

R. Polloni and O. Svelto, “Optimum coupling for intracavity second harmonic generation,” IEEE J. Quantum Electron. 4(9), 528–530 (1968).
[CrossRef]

Powers, P. E.

Re, A.

Reali, G.

Reali, G. C.

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34(7), 1297–1300 (1998).
[CrossRef]

Rosenbluh, M.

S. Greenstein and M. Rosenbluh, “The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation,” Opt. Commun. 248(1-3), 241–248 (2005).
[CrossRef]

S. Greenstein and M. Rosenbluh, “Dynamics of cw intra-cavity second-harmonic generation by PPKTP,” Opt. Commun. 238(4-6), 319–327 (2004).
[CrossRef]

Rosenman, G.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[CrossRef]

Sarrouf, R.

R. Sarrouf, T. Badr, and J.-J. Zondy, “Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3μm Nd:YLiF4 lasers,” J. Opt. A, Pure Appl. Opt. 10(10), 104011 (2008).
[CrossRef]

R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J.-J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
[CrossRef] [PubMed]

Segala, D.

Sennaroglu, A.

Sheik-Bahae, M.

Sibbett, W.

Sibilia, C.

Silvestri, S. D.

Skliar, A.

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[CrossRef]

Smith, R. G.

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

Sousa, V.

Spence, D. E.

Spielmann, Ch.

Stankov, K. A.

Stegeman, G.

Stegeman, G. I.

Sun, H. D.

Svelto, O.

R. Polloni and O. Svelto, “Optimum coupling for intracavity second harmonic generation,” IEEE J. Quantum Electron. 4(9), 528–530 (1968).
[CrossRef]

Tamura, K.

Tang, C. L.

Touahri, D.

Tsai, S. W.

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4,” Appl. Phys. B 72, 395–397 (2001).

Valentine, G. J.

Van Stryland, E.

Van Stryland, E. W.

Vanherzeele, H.

Wang, S. C.

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4,” Appl. Phys. B 72, 395–397 (2001).

Wei, Y.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
[CrossRef]

Weingarten, K. J.

Wetter, N. U.

F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, and J.-J. Zondy, “Tunable single-frequency Nd:YVO4 /BiB3O6 ring laser at 671nm,” IEEE J. Quantum Electron. (to be published).

Withford, M. J.

Wu, L.-A.

Xu, G.

Xu, Z.-Y.

Yao, A.-Y.

Zanon-Willette, T.

F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, and J.-J. Zondy, “Tunable single-frequency Nd:YVO4 /BiB3O6 ring laser at 671nm,” IEEE J. Quantum Electron. (to be published).

Zavelani-Rossi, M.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode-locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
[CrossRef]

Zhang, G.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
[CrossRef]

R. Fluck, G. Zhang, U. Keller, K. J. Weingarten, and M. Moser, “Diode-pumped passively mode-locked 1.3-microm Nd:YVO(4) and Nd:YLF lasers by use of semiconductor saturable absorbers,” Opt. Lett. 21(17), 1378–1380 (1996).
[CrossRef] [PubMed]

Zhang, K.

Zheng, Y.

Zhu, H. Y.

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
[CrossRef]

Zondy, J.-J.

R. Sarrouf, T. Badr, and J.-J. Zondy, “Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3μm Nd:YLiF4 lasers,” J. Opt. A, Pure Appl. Opt. 10(10), 104011 (2008).
[CrossRef]

R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J.-J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
[CrossRef] [PubMed]

J.-J. Zondy, D. Touahri, and O. Acef, “Absolute value of the d36 nonlinear coefficient of AgGaS2: prospect for a low-threshold doubly-resonant oscillator-based 3:1 frequency divider,” J. Opt. Soc. Am. B 14(10), 2481–2497 (1997).
[CrossRef]

J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second-harmonic generation with Gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).
[CrossRef]

F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, and J.-J. Zondy, “Tunable single-frequency Nd:YVO4 /BiB3O6 ring laser at 671nm,” IEEE J. Quantum Electron. (to be published).

Appl. Opt. (4)

Appl. Phys. B (2)

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4,” Appl. Phys. B 72, 395–397 (2001).

H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, “8.1 W/670.7 nm and 5.1 W/669.6 nm cw red light outputs by intracavity frequency doubling of a Nd:YAP laser with LBO,” Appl. Phys. B 91(3-4), 433–436 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

K. Fradkin, A. Arie, A. Skliar, and G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk,” Appl. Phys. Lett. 74(7), 914–916 (1999).
[CrossRef]

IEEE J. Quantum Electron. (8)

P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-Transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals,” IEEE J. Quantum Electron. 35(4), 647–655 (1999).
[CrossRef]

Y. Inoue, S. Konno, T. Kojima, and S. Fujikawa, “High-power red beam generation by frequency-doubling of a Nd:YAG Laser,” IEEE J. Quantum Electron. 35(11), 1737–1740 (1999).
[CrossRef]

R. Polloni and O. Svelto, “Optimum coupling for intracavity second harmonic generation,” IEEE J. Quantum Electron. 4(9), 528–530 (1968).
[CrossRef]

R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[CrossRef]

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode-locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34(1), 61–70 (1998).
[CrossRef]

F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, and J.-J. Zondy, “Tunable single-frequency Nd:YVO4 /BiB3O6 ring laser at 671nm,” IEEE J. Quantum Electron. (to be published).

A. Agnesi, G. C. Reali, and P. G. Gobbi, “430-mW single-transverse-mode diode-pumped Nd:YVO4 laser at 671 nm,” IEEE J. Quantum Electron. 34(7), 1297–1300 (1998).
[CrossRef]

A. Agnesi, “Kerr-lens modelocking of solid-state lasers and unidirectional cavities,” IEEE J. Quantum Electron. 30(4), 1115–1121 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

R. Sarrouf, T. Badr, and J.-J. Zondy, “Intracavity second-harmonic generation of diode-pumped continuous-wave, single-frequency 1.3μm Nd:YLiF4 lasers,” J. Opt. A, Pure Appl. Opt. 10(10), 104011 (2008).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (4)

S. Greenstein and M. Rosenbluh, “The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation,” Opt. Commun. 248(1-3), 241–248 (2005).
[CrossRef]

S. Greenstein and M. Rosenbluh, “Dynamics of cw intra-cavity second-harmonic generation by PPKTP,” Opt. Commun. 238(4-6), 319–327 (2004).
[CrossRef]

J.-J. Zondy, “Comparative theory of walkoff-limited type-II versus type-I second-harmonic generation with Gaussian beams,” Opt. Commun. 81(6), 427–440 (1991).
[CrossRef]

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66(1), 41–46 (1988).
[CrossRef]

Opt. Express (2)

Opt. Lett. (20)

R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17(1), 28–30 (1992).
[CrossRef] [PubMed]

G. I. Stegeman, M. Sheik-Bahae, E. Van Stryland, and G. Assanto, “Large nonlinear phase shifts in second-order nonlinear-optical processes,” Opt. Lett. 18(1), 13–15 (1993).
[CrossRef] [PubMed]

D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991).
[CrossRef] [PubMed]

T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17(18), 1292–1294 (1992).
[CrossRef] [PubMed]

G. P. A. Malcolm and A. I. Ferguson, “Self-mode locking of a diode-pumped Nd:YLF laser,” Opt. Lett. 16(24), 1967–1969 (1991).
[CrossRef] [PubMed]

G. Cerullo, S. D. Silvestri, and V. Magni, “Self-starting Kerr-lens mode locking of a Ti:sapphire laser,” Opt. Lett. 19(14), 1040–1042 (1994).
[CrossRef] [PubMed]

J. R. Lincoln and A. I. Ferguson, “All-solid-state self-mode locking of a Nd:YLF laser,” Opt. Lett. 19(24), 2119–2121 (1994).
[CrossRef] [PubMed]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, and C. L. Tang, “Self-starting mode-locked ring-cavity Ti:sapphire laser,” Opt. Lett. 17(22), 1581–1583 (1992).
[CrossRef] [PubMed]

D. R. Heatley, A. M. Dunlop, and W. J. Firth, “Kerr lens effects in a ring resonator with an aperture: mode locking and unidirectional operation,” Opt. Lett. 18(2), 170–172 (1993).
[CrossRef] [PubMed]

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser,” Opt. Lett. 21(12), 875–877 (1996).
[CrossRef] [PubMed]

R. Fluck, G. Zhang, U. Keller, K. J. Weingarten, and M. Moser, “Diode-pumped passively mode-locked 1.3-microm Nd:YVO(4) and Nd:YLF lasers by use of semiconductor saturable absorbers,” Opt. Lett. 21(17), 1378–1380 (1996).
[CrossRef] [PubMed]

H. D. Sun, G. J. Valentine, R. Macaluso, S. Calvez, D. Burns, M. D. Dawson, T. Jouhti, and M. Pessa, “Low-loss 1.3-µm GaInNAs saturable Bragg reflector for high-power picosecond neodymium lasers,” Opt. Lett. 27(23), 2124–2126 (2002).
[CrossRef]

A. Agnesi, A. Guandalini, G. Reali, S. Dell’Acqua, and G. Piccinno, “High-brightness 2.4-W continuous-wave Nd:GdVO4 laser at 670 nm,” Opt. Lett. 29(1), 56–58 (2004).
[CrossRef] [PubMed]

R. Sarrouf, V. Sousa, T. Badr, G. Xu, and J.-J. Zondy, “Watt-level single-frequency tunable Nd:YLF/periodically poled KTiOPO(4) red laser,” Opt. Lett. 32(18), 2732–2734 (2007).
[CrossRef] [PubMed]

K. A. Stankov, “Mode locking by a frequency-doubling crystal: generation of transform-limited ultrashort light pulses,” Opt. Lett. 14(7), 359–361 (1989).
[CrossRef] [PubMed]

M. B. Danailov, G. Cerullo, V. Magni, D. Segala, and S. De Silvestri, “Nonlinear mirror mode locking of a cw Nd:YLF laser,” Opt. Lett. 19(11), 792–794 (1994).
[CrossRef] [PubMed]

G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20(7), 746–748 (1995).
[CrossRef] [PubMed]

K. I. Martin, W. A. Clarkson, and D. C. Hanna, “Self-suppression of axial mode hopping by intracavity second-harmonic generation,” Opt. Lett. 22(6), 375–377 (1997).
[CrossRef] [PubMed]

M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, “Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO(4) crystal,” Opt. Lett. 24(4), 205–207 (1999).
[CrossRef]

Proc. SPIE (1)

P. De Natale, I. Galli, G. Giusfredi, D. Mazzotti, and P. Cancio, “Functional periodically-poled crystals for powerful intracavity CW difference-frequency-generation of widely tunable, high spectral purity IR radiation,” Proc. SPIE 7031, 70310K (2008).
[CrossRef]

Other (1)

V. Liverini, S. Schön, R. Grange, M. Haiml, S. C. Zeller and U. Keller, “A low-loss GaInNAs SESAM mode-locking a 1.3-μm,” paper CThV7, CLEO 2004 Technical Digest (OSA).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Experimental ring laser setup. TEC: thermo-electric cooler; OSA: optical spectrum analyzer; (b) Photograph of the ppKTP chip in its TEC-cooled mount located between M3 and M4, showing the red circular TEM00 spot reflected on the ND glass filter of the powermeter head.

Fig. 2
Fig. 2

(a) Optimally out-coupled FH power versus absorbed pump power, obtained with a T = 2% output coupler, without etalon (triangles, bi-modal lasing) and with a R = 25% etalon (squares, SLM operation); (b) FH SLM tuning curve; (c) ppKTP QPM temperature versus IR wavelength recorded under w0 = 90μm loose focusing (inset: ppKTP temperature acceptance bandwidths at 1322.12nm for a loose focusing – w0 = 90μm – and for a stronger focusing - w0 = 41μm – showing a – 4°C QPM temperature shift characteristic of strongly focused SHG).

Fig. 3
Fig. 3

(a) Scanning CFP transmission: Trace 3 corresponds to cw SLM (traces 1-2 are related to the dynamical pulsing regime in section 3.2 and section 4); (b) FH spectrum (solid line) without ppKTP (SLM or bi-mode). The dashed curve depicts the plane-wave QPM curve of ppKTP that can be shifted with temperature; (c) ppKTP single-pass efficiency Γ = P/Pω2.

Fig. 4
Fig. 4

(a) FH (2) and SH (3) broadest spectra recorded at T = 30.5°C, when the ppKTP is quasi-phase-matched at gain-center wavelength along with the position of the spectral SHG curve (1) at T = 30.5°C. The inset displays the temporal trace of the InGaAs photodiode; (c) Corresponding temporal FH trace recorded by the fast InGaAs detector (no self-pulsing observed at T~30°C).

Fig. 5
Fig. 5

. FH (2) and SH (3) spectra (left panels) and correlated FH time traces (right panels) recorded at various ppKTP temperatures on the focusing Kerr nonlinearity side (T = 15°C, top panel) and on the defocusing Kerr nonlinearity side (T = 45°, 55°, 75°C, lower panels). The pump power was Pabs = 13W. The temperature-shifted QPM curve is also shown with dashed lines (1).

Fig. 6
Fig. 6

FH Spectra and time traces at T = 70°C as function of the diode pump decreasing power. The bottom panels display the relative amplitude of the pulse train. At Pabs<6.5W the spectral gain broadening disappear and the laser recovers narrowband cw operation (bi-modal regime as checked with the CFP interferometer).

Fig. 7
Fig. 7

Pulse train envelopes recorded at microsecond time scales. The envelope pattern varies not only versus the ppKTP temperature but also depends on the diode pump power. The horizontal dashed lines in the two last panels indicate the level of cw (narrow band) output from the laser when the ppKTP is translated out of the cavity.

Fig. 8
Fig. 8

(a) A close-up shot of the central part of the temporal waveform in Fig. 6 (T = 20°C). The dashed line gives the cw coherent level detected by the InGaAs when the ppKTP is removed from the cavity (narrow CFP fringes are detected in this case). (b) Red power exiting in both directions (forward and backward) as a function of ppKTP temperature, without any etalon and at Pabs = 13W. The black circle data are the FW fundamental power leaking through M3.

Fig. 9
Fig. 9

. (a) Cascaded second-order nonlinear phaseshift for I = 2 × 10+6 W/cm2 versus the phase-mismatch parameter (solid line). The dotted line is the analytical approximation given in [22]. The thin upper curve is the FH depletion factor. (b) Nonlinear phase-shift (NLPS) versus the position z inside the ppKTP, for various phase-mismatch parameters β = Δklc. (c) the corresponding evolution of the FH intensity depletion and NLPS versus z. For even integer value of β/π the energy flows periodically from the FH to the SH and backward and the net SH conversion is nil at the output of the ppKTP.

Fig. 10
Fig. 10

(a) Theoretical ICSHG conversion efficiency plotted as function of the nonlinear y-parameter, showing that optimal conversion is achieved for yopt = 1 independently of the pump parameter x = Pabs/Pth. The inset shows the SHG power as the pump is increased, for two values of y. (b) Experimental optimal SLM red power achieved at gain-center with ppKTP (circles), as compared with that achieved with a type-I cut BiBO. The solid lines are a fit to Eq. (2), yielding y = 1.0 (ppKTP) and y = 0.1 (BiBO).

Fig. 11
Fig. 11

(a) Red power (uncorrected for the transmission loss of M4) SLM tuning curve. The inset shows the red wave temperature tuning slope ( + 0.033nm/◦C) external (Fig. 2c) and internal to the cavity. (b) Red beam quality factors in the horizontal (squares) and vertical (circles) direction, showing a slight astigmatism.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d 2 E d z ' 2 + i Δ k l c d E d z ' Γ 2 l c 2 ( 1 2 | E | 2 ) E = 0
P 2 ω = I sat ( π w 2 / 2 ) 4 y [ ( y 1 ) 2 + 4 y x ( y + 1 ) ] 2 .
( l c w w 0 ) 2 = ε 0 c L λ ω 2 4 π 2 ( d eff 2 / n 3 ) I sat G

Metrics