Abstract

Optofluidic platforms used for biomolecular detection require spectral filtering for distinguishing analyte signals from unwanted background. Towards a fully integrated platform, an on-chip filter is required. Selective deposition of dielectric thin films on an optofluidic sensor based on antiresonant reflecting optical waveguide (ARROW) technology provides the means for localized, on-chip optical filtering. We present a lift-off technique, compatible with thin-film processing including plasma-enhanced chemical vapor and sputtering deposition. The resulting optofluidic notch filters exhibited a 20 dB rejection with linewidths as low as 20 nm for ~1 cm long chips consisting of liquid-core and solid-core waveguides.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
    [CrossRef] [PubMed]
  3. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  4. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
    [CrossRef]
  5. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
    [CrossRef] [PubMed]
  6. P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
    [CrossRef]
  7. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
    [CrossRef] [PubMed]
  8. S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
    [CrossRef] [PubMed]
  9. M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
    [CrossRef] [PubMed]
  10. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
    [CrossRef]
  11. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31(14), 2136–2138 (2006).
    [CrossRef] [PubMed]
  12. H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
    [CrossRef]
  13. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef]
  14. P. Yeh, Optical waves in layered media (Wiley-Interscience, 1988).
  15. K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17(3), 594–596 (2005).
    [CrossRef]
  16. A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17(12), 2595–2597 (2005).
    [CrossRef]
  17. E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
    [CrossRef] [PubMed]

2009

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

2008

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
[CrossRef]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

2007

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

2006

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31(14), 2136–2138 (2006).
[CrossRef] [PubMed]

2005

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17(3), 594–596 (2005).
[CrossRef]

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17(12), 2595–2597 (2005).
[CrossRef]

2000

1986

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Backhouse, C. J.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Barber, J. P.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31(14), 2136–2138 (2006).
[CrossRef] [PubMed]

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Bliss, C. L.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Chiang, K. S.

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17(3), 594–596 (2005).
[CrossRef]

Deamer, D. W.

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31(14), 2136–2138 (2006).
[CrossRef] [PubMed]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Hawkins, A. R.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
[CrossRef]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31(14), 2136–2138 (2006).
[CrossRef] [PubMed]

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Kostovski, G.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17(12), 2595–2597 (2005).
[CrossRef]

Kühn, S.

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Liu, Q.

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17(3), 594–596 (2005).
[CrossRef]

Lor, K. P.

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17(3), 594–596 (2005).
[CrossRef]

Lunt, E. J.

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

McMullin, J. N.

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Measor, P.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Mitchell, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17(12), 2595–2597 (2005).
[CrossRef]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Perentos, A.

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17(12), 2595–2597 (2005).
[CrossRef]

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

Phillips, B. S.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Ranka, J. K.

Rudenko, M. I.

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Schmidt, H.

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
[CrossRef]

E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008).
[CrossRef] [PubMed]

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31(14), 2136–2138 (2006).
[CrossRef] [PubMed]

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Seballos, L.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Stentz, A. J.

Windeler, R. S.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yin, D.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31(14), 2136–2138 (2006).
[CrossRef] [PubMed]

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

Zhang, J. Z.

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Appl. Phys. Lett.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986).
[CrossRef]

P. Measor, L. Seballos, D. Yin, J. Z. Zhang, E. J. Lunt, A. R. Hawkins, and H. Schmidt, “On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides,” Appl. Phys. Lett. 90(21), 211107 (2007).
[CrossRef]

Biosens. Bioelectron.

M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron

H. Schmidt, D. Yin, J. P. Barber, and A. R. Hawkins, “Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids,” IEEE J. Sel. Top. Quantum Electron. 11(2), 519–527 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

K. P. Lor, Q. Liu, and K. S. Chiang, “UV-written long-period gratings on polymer waveguides,” IEEE Photon. Technol. Lett. 17(3), 594–596 (2005).
[CrossRef]

A. Perentos, G. Kostovski, and A. Mitchell, “Polymer long-period raised rib waveguide gratings using nano-imprint lithography,” IEEE Photon. Technol. Lett. 17(12), 2595–2597 (2005).
[CrossRef]

Lab Chip

D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007).
[CrossRef] [PubMed]

S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009).
[CrossRef] [PubMed]

C. L. Bliss, J. N. McMullin, and C. J. Backhouse, “Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection,” Lab Chip 8(1), 143–151 (2007).
[CrossRef] [PubMed]

Microfluid. Nanofluid.

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4(1-2), 3–16 (2008).
[CrossRef] [PubMed]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4(1-2), 17–32 (2008).
[CrossRef]

Nature

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

P. Yeh, Optical waves in layered media (Wiley-Interscience, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

– ARROW platform with integrated pump rejection filter a) schematic representation, b) fabricated device

Fig. 2
Fig. 2

Integrated filter fabrication by lift-off, a) deposition of filter films, b) patterning of SU-8, c) development of PMGI, d) deposition of broadband films, e) lift-off process, f) patterning of solid-core rib waveguide.

Fig. 3
Fig. 3

Isotropic deposition over lift-off polymers, a) coating underside of lift-off polymers, b) vertical “wall” of thin films remaining after the PMGI has been lifted off, c) directional deposition lift-off profile.

Fig. 4
Fig. 4

Optical test setup for white light spectrum analysis

Fig. 5
Fig. 5

Optical test of solid-core filtering, a) broadband layer structure and loss coefficient, b) filter region layer structure and loss coefficient, c) lift-off transition from broadband to filter solid-core waveguides.

Fig. 6
Fig. 6

Optical test of ARROW chip a) side view of liquid-core platform showing broadband sections (Llc) and selectively defined filter regions in solid-core collection waveguides (Lsc). Waveguide coupling locations from broadband to filter (κT) and liquid-core ARROW to solid-core ARROWs (κi) b) simulated (red) and resulting (black) spectrum transmission across entire chip c) SEM of cross sectional profile of liquid-core waveguide.

Tables (3)

Tables Icon

Table 1 ARROW filter layers design

Tables Icon

Table 3 Integrated liquid-core ARROW layers design

Tables Icon

Table 2 ARROW broadband layers design

Metrics