Abstract

We describe a successful introduction of maximum-likelihood-sequence estimation (MLSE) into digital coherent receivers together with finite-impulse response (FIR) filters in order to equalize both linear and nonlinear fiber impairments. The MLSE equalizer based on the Viterbi algorithm is implemented in the offline digital signal processing (DSP) core. We transmit 20-Gbit/s quadrature phase-shift keying (QPSK) signals through a 200-km-long standard single-mode fiber. The bit-error rate performance shows that the MLSE equalizer outperforms the conventional adaptive FIR filter, especially when nonlinear impairments are predominant.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7Gb/s receiver with digital equalizer using maximum likelihood sequence estimation,” European Conference on Optical Communication (ECOC 2004), Stockholm, Sweden, Post deadline paper PD Th4.1.5 (2004).
  2. J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Joint PMD and chromatic dispersion compensation using an MLSE,” European Conference on Optical Communication (ECOC 2006), Cannes, France, Paper We2.5.2 (2006).
  3. N. Alić, G. C. Papen, R. E. Saperstein, L. B. Milstein, and Y. Fainman, “Signal statistics and maximum likelihood sequence estimation in intensity modulated fiber optic links containing a single optical preamplifier,” Opt. Express 13(12), 4568–4579 (2005).
    [CrossRef] [PubMed]
  4. F. N. Hauske, B. Lankl, C. Xie, and E.-D. Schmidt, “Iterative electronic equalization utilizing low complexity MLSEs for 40 Gbit/s DQPSK modulation,” Optical Fiber Communication Conference (OFC 2007), Anaheim, CA, USA, Paper OMG2 (2007).
  5. G. Agrawal, Fiber-Optic Communication Systems, (John Wiley & Sons, New York, NY, USA, 2002).
  6. O. E. Agazzi, and V. Gopinathan, “The impact of nonlinearity on electronic dispersion compensation of optical channels,” Optical Fiber Communication Conference (OFC 2004), Anaheim, CA, USA, Paper TuG6 (2004).
  7. O. E. Agazzi, M. R. Hueda, H. S. Carrer, and D. E. Crivelli, “Maximum-likelihood sequence estimation in dispersive optical channels,” J. Lightwave Technol. 23(2), 749–763 (2005).
    [CrossRef]
  8. S. Chandrasekhar and A. H. Gnauck, “Performance of MLSE receiver in a dispersion-managed multispan experiment at 10.7 Gb/s under nonlinear transmission,” IEEE Photon. Technol. Lett. 18(23), 2448–2450 (2006).
    [CrossRef]
  9. T. Okoshi, and K. Kikuchi, Coherent optical fiber communications, (KTK Scientific Publishers, Tokyo, Japan, 1988).
  10. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
    [CrossRef]
  11. S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett. 18(9), 1016–1018 (2006).
    [CrossRef]
  12. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  13. G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
    [CrossRef]
  14. G. D. Forney, “The Viterbi algorithm,” IEEE Proc. 61(3), 268–278 (1973).
    [CrossRef]
  15. J. G. Proakis, Digital communications, 4th Edition. (McGraw-Hill, New York, NY, USA, 2001).

2008 (1)

2006 (3)

S. Chandrasekhar and A. H. Gnauck, “Performance of MLSE receiver in a dispersion-managed multispan experiment at 10.7 Gb/s under nonlinear transmission,” IEEE Photon. Technol. Lett. 18(23), 2448–2450 (2006).
[CrossRef]

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[CrossRef]

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett. 18(9), 1016–1018 (2006).
[CrossRef]

2005 (2)

1973 (1)

G. D. Forney, “The Viterbi algorithm,” IEEE Proc. 61(3), 268–278 (1973).
[CrossRef]

1972 (1)

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

Agazzi, O. E.

Alic, N.

Carrer, H. S.

Chandrasekhar, S.

S. Chandrasekhar and A. H. Gnauck, “Performance of MLSE receiver in a dispersion-managed multispan experiment at 10.7 Gb/s under nonlinear transmission,” IEEE Photon. Technol. Lett. 18(23), 2448–2450 (2006).
[CrossRef]

Crivelli, D. E.

Fainman, Y.

Forney, G. D.

G. D. Forney, “The Viterbi algorithm,” IEEE Proc. 61(3), 268–278 (1973).
[CrossRef]

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

Gnauck, A. H.

S. Chandrasekhar and A. H. Gnauck, “Performance of MLSE receiver in a dispersion-managed multispan experiment at 10.7 Gb/s under nonlinear transmission,” IEEE Photon. Technol. Lett. 18(23), 2448–2450 (2006).
[CrossRef]

Hueda, M. R.

Katoh, K.

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett. 18(9), 1016–1018 (2006).
[CrossRef]

Kikuchi, K.

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett. 18(9), 1016–1018 (2006).
[CrossRef]

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[CrossRef]

Milstein, L. B.

Papen, G. C.

Saperstein, R. E.

Savory, S. J.

Tsukamoto, S.

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett. 18(9), 1016–1018 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett. 18(9), 1016–1018 (2006).
[CrossRef]

S. Chandrasekhar and A. H. Gnauck, “Performance of MLSE receiver in a dispersion-managed multispan experiment at 10.7 Gb/s under nonlinear transmission,” IEEE Photon. Technol. Lett. 18(23), 2448–2450 (2006).
[CrossRef]

IEEE Proc. (1)

G. D. Forney, “The Viterbi algorithm,” IEEE Proc. 61(3), 268–278 (1973).
[CrossRef]

IEEE Trans. Inf. Theory (1)

G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory 18(3), 363–378 (1972).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Other (7)

F. N. Hauske, B. Lankl, C. Xie, and E.-D. Schmidt, “Iterative electronic equalization utilizing low complexity MLSEs for 40 Gbit/s DQPSK modulation,” Optical Fiber Communication Conference (OFC 2007), Anaheim, CA, USA, Paper OMG2 (2007).

G. Agrawal, Fiber-Optic Communication Systems, (John Wiley & Sons, New York, NY, USA, 2002).

O. E. Agazzi, and V. Gopinathan, “The impact of nonlinearity on electronic dispersion compensation of optical channels,” Optical Fiber Communication Conference (OFC 2004), Anaheim, CA, USA, Paper TuG6 (2004).

T. Okoshi, and K. Kikuchi, Coherent optical fiber communications, (KTK Scientific Publishers, Tokyo, Japan, 1988).

A. Faerbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Griesser, and C. Glingener, “Performance of a 10.7Gb/s receiver with digital equalizer using maximum likelihood sequence estimation,” European Conference on Optical Communication (ECOC 2004), Stockholm, Sweden, Post deadline paper PD Th4.1.5 (2004).

J. M. Gene, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Joint PMD and chromatic dispersion compensation using an MLSE,” European Conference on Optical Communication (ECOC 2006), Cannes, France, Paper We2.5.2 (2006).

J. G. Proakis, Digital communications, 4th Edition. (McGraw-Hill, New York, NY, USA, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for 20-Gbit/s QPSK transmission.

Fig. 2
Fig. 2

MLSE implementation in the DSP circuit.

Fig. 3
Fig. 3

BERs measured as a function for received power after transmission through a 100-km-long SMF.

Fig. 4
Fig. 4

BERs measured as a function for received power after transmission through a 200-km-long SMF.

Fig. 5
Fig. 5

Power penalty analysis for the MLSE receiver. BERs are measured as a function of the received power in the 200-km-long 20-Gbit/s QPSK transmission system.

Metrics