Abstract

A mid-IR multiwavelength difference frequency generation (DFG) laser source with fiber laser fundamental lights is demonstrated by using the dispersion property of PPLN to broaden the quasi-phase-matching (QPM) acceptance bandwidth (BW). Our results show that the QPM BW for the pump YDFL is much larger than that for the signal EDFL. Using a multiwavelength YDFL and a single-wavelength EDFL as the pump and the signal lights, the DFG laser source can simultaneously emit 14 mid-IR wavelengths with the spacing of 14nm at a fixed PPLN temperature. Moreover, mid-IR multiwavelength lasing lines can be synchronously tuned between 3.28 and 3.47μm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
    [CrossRef]
  2. T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
    [CrossRef]
  3. A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
    [CrossRef]
  4. M. Asobe, O. Tadanaga, T. Umeki, T. Yanagawa, Y. Nishida, K. Magari, and H. Suzuki, “Unequally spaced multiple mid-infrared wavelength generation using an engineered quasi-phase-matching device,” Opt. Lett. 32(23), 3388–3390 (2007).
    [CrossRef] [PubMed]
  5. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized X(2) grating,” Opt. Lett. 32(9), 1129–1131 (2007).
    [CrossRef] [PubMed]
  6. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO(3) waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
    [CrossRef]
  7. Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
    [CrossRef]
  8. M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35(12), 978–980 (1999).
    [CrossRef]
  9. T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86(16), 161106 (2005).
    [CrossRef]
  10. Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
    [CrossRef]
  11. D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, “16-microm infrared generation by difference-frequency mixing in diffusion-bonded-stacked GaAs,” Opt. Lett. 23(13), 1010–1012 (1998).
    [CrossRef]
  12. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. magnesium oxide doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [CrossRef]
  13. Q. H. Mao, Z. J. Zhu, Q. Sun, W. Q. Liu, and J. W. Y. Lit, “Influences of gain broadening on multiwavelength oscillations in YDFLs and EDFLs,” Opt. Commun. 281(11), 3153–3158 (2008).
    [CrossRef]
  14. Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, “Widely tunable continuous wave mid-IR DFG source based on fiber lasers and amplifiers,” Laser Phys. Lett. 6(9), 647–652 (2009).
    [CrossRef]
  15. Q. Mao, J. Wang, X. Sun, and M. Zhang, “A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber,” Opt. Commun. 159(1-3), 149–157 (1999).
    [CrossRef]

2009 (1)

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, “Widely tunable continuous wave mid-IR DFG source based on fiber lasers and amplifiers,” Laser Phys. Lett. 6(9), 647–652 (2009).
[CrossRef]

2008 (2)

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Q. H. Mao, Z. J. Zhu, Q. Sun, W. Q. Liu, and J. W. Y. Lit, “Influences of gain broadening on multiwavelength oscillations in YDFLs and EDFLs,” Opt. Commun. 281(11), 3153–3158 (2008).
[CrossRef]

2007 (2)

2005 (2)

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86(16), 161106 (2005).
[CrossRef]

2004 (1)

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

2002 (2)

A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
[CrossRef]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[CrossRef]

1999 (3)

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35(12), 978–980 (1999).
[CrossRef]

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO(3) waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
[CrossRef]

Q. Mao, J. Wang, X. Sun, and M. Zhang, “A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber,” Opt. Commun. 159(1-3), 149–157 (1999).
[CrossRef]

1998 (1)

1997 (1)

Ashizawa, H.

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Asobe, M.

Brener, I.

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO(3) waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
[CrossRef]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35(12), 978–980 (1999).
[CrossRef]

Byer, R. L.

Cao, Z.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Capasso, F.

A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
[CrossRef]

Chang, J. H.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, “Widely tunable continuous wave mid-IR DFG source based on fiber lasers and amplifiers,” Laser Phys. Lett. 6(9), 647–652 (2009).
[CrossRef]

Chen, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Cho, A. Y.

A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
[CrossRef]

Chou, M. H.

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO(3) waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
[CrossRef]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35(12), 978–980 (1999).
[CrossRef]

Deng, L.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Endo, M.

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Feigelson, R. S.

Fejer, M. M.

Fried, A.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[CrossRef]

Fujioka, T.

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Gao, X.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Gmachl, C.

A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
[CrossRef]

Gong, Z.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Gordon, L. A.

Han, L.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Jiang, J.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, “Widely tunable continuous wave mid-IR DFG source based on fiber lasers and amplifiers,” Laser Phys. Lett. 6(9), 647–652 (2009).
[CrossRef]

Jundt, D.

Jung, C.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Kanbara, H.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86(16), 161106 (2005).
[CrossRef]

Ko, D. K.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Lee, J.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Lee, Y. L.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Li, X. Q.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, “Widely tunable continuous wave mid-IR DFG source based on fiber lasers and amplifiers,” Laser Phys. Lett. 6(9), 647–652 (2009).
[CrossRef]

Liang, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Lit, J. W. Y.

Q. H. Mao, Z. J. Zhu, Q. Sun, W. Q. Liu, and J. W. Y. Lit, “Influences of gain broadening on multiwavelength oscillations in YDFLs and EDFLs,” Opt. Commun. 281(11), 3153–3158 (2008).
[CrossRef]

Liu, W. Q.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, “Widely tunable continuous wave mid-IR DFG source based on fiber lasers and amplifiers,” Laser Phys. Lett. 6(9), 647–652 (2009).
[CrossRef]

Q. H. Mao, Z. J. Zhu, Q. Sun, W. Q. Liu, and J. W. Y. Lit, “Influences of gain broadening on multiwavelength oscillations in YDFLs and EDFLs,” Opt. Commun. 281(11), 3153–3158 (2008).
[CrossRef]

Magari, K.

Mao, Q.

Q. Mao, J. Wang, X. Sun, and M. Zhang, “A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber,” Opt. Commun. 159(1-3), 149–157 (1999).
[CrossRef]

Mao, Q. H.

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, “Widely tunable continuous wave mid-IR DFG source based on fiber lasers and amplifiers,” Laser Phys. Lett. 6(9), 647–652 (2009).
[CrossRef]

Q. H. Mao, Z. J. Zhu, Q. Sun, W. Q. Liu, and J. W. Y. Lit, “Influences of gain broadening on multiwavelength oscillations in YDFLs and EDFLs,” Opt. Commun. 281(11), 3153–3158 (2008).
[CrossRef]

Nanri, K.

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Nishida, Y.

Noh, Y. C.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Oh, K.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Ohara, S.

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Parameswaran, K. R.

M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO(3) waveguides,” Opt. Lett. 24(16), 1157–1159 (1999).
[CrossRef]

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35(12), 978–980 (1999).
[CrossRef]

Richter, D.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[CrossRef]

Sergent, A. M.

A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
[CrossRef]

Sivco, D. L.

A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
[CrossRef]

Small, D. L.

Straub, A.

A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
[CrossRef]

Sun, Q.

Q. H. Mao, Z. J. Zhu, Q. Sun, W. Q. Liu, and J. W. Y. Lit, “Influences of gain broadening on multiwavelength oscillations in YDFLs and EDFLs,” Opt. Commun. 281(11), 3153–3158 (2008).
[CrossRef]

Sun, X.

Q. Mao, J. Wang, X. Sun, and M. Zhang, “A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber,” Opt. Commun. 159(1-3), 149–157 (1999).
[CrossRef]

Suzuki, H.

Tadanaga, O.

Takahashi, M.

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Tezuka, T.

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Tittel, F. K.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[CrossRef]

Umeki, T.

Vodopyanov, K. L.

Walega, J. G.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[CrossRef]

Wang, H.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Wang, J.

Q. Mao, J. Wang, X. Sun, and M. Zhang, “A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber,” Opt. Commun. 159(1-3), 149–157 (1999).
[CrossRef]

Wert, B. P.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[CrossRef]

Wu, Y. S.

Xu, C.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Yamaguchi, S.

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Yanagawa, T.

Yu, B. A.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Yu, T. J.

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

Yumoto, J.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86(16), 161106 (2005).
[CrossRef]

Zelmon, D. E.

Zhang, M.

Q. Mao, J. Wang, X. Sun, and M. Zhang, “A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber,” Opt. Commun. 159(1-3), 149–157 (1999).
[CrossRef]

Zhang, W.

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Zheng, D.

Zhu, Z. J.

Q. H. Mao, Z. J. Zhu, Q. Sun, W. Q. Liu, and J. W. Y. Lit, “Influences of gain broadening on multiwavelength oscillations in YDFLs and EDFLs,” Opt. Commun. 281(11), 3153–3158 (2008).
[CrossRef]

Appl. Phys. B (2)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[CrossRef]

T. Tezuka, H. Ashizawa, M. Endo, S. Yamaguchi, K. Nanri, T. Fujioka, M. Takahashi, and S. Ohara, “Trace gas monitor based on difference frequency generation at 4μm using mass-production laser diodes as pump and signal light sources,” Appl. Phys. B 78(2), 229–233 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

Y. L. Lee, Y. C. Noh, C. Jung, T. J. Yu, B. A. Yu, J. Lee, D. K. Ko, and K. Oh, “Reshaping of a second-harmonic curve in periodically poled Ti: LiNbO3 channel waveguide by a local-temperature-control technique,” Appl. Phys. Lett. 86(1), 011104 (2005).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yumoto, “Broadband difference frequency generation around phase-match singularity,” Appl. Phys. Lett. 86(16), 161106 (2005).
[CrossRef]

Electron. Lett. (2)

M. H. Chou, I. Brener, K. R. Parameswaran, and M. M. Fejer, “Stability and Bandwidth Enhancement of Difference Frequency Generation (DFG)-based wavelength conversion by pump detuning,” Electron. Lett. 35(12), 978–980 (1999).
[CrossRef]

A. Straub, C. Gmachl, D. L. Sivco, A. M. Sergent, F. Capasso, and A. Y. Cho, “Simultaneously at two wavelengths (5.0 and 7.5μm) singlemode and tunable quantum cascade distributed feedback lasers,” Electron. Lett. 38(12), 565–567 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

Q. H. Mao, J. Jiang, X. Q. Li, J. H. Chang, and W. Q. Liu, “Widely tunable continuous wave mid-IR DFG source based on fiber lasers and amplifiers,” Laser Phys. Lett. 6(9), 647–652 (2009).
[CrossRef]

Opt. Commun. (3)

Q. Mao, J. Wang, X. Sun, and M. Zhang, “A theoretical analysis of amplification characteristics of bi-directional erbium-doped fiber amplifiers with single erbium-doped fiber,” Opt. Commun. 159(1-3), 149–157 (1999).
[CrossRef]

Q. H. Mao, Z. J. Zhu, Q. Sun, W. Q. Liu, and J. W. Y. Lit, “Influences of gain broadening on multiwavelength oscillations in YDFLs and EDFLs,” Opt. Commun. 281(11), 3153–3158 (2008).
[CrossRef]

Z. Cao, L. Han, W. Liang, L. Deng, H. Wang, C. Xu, W. Chen, W. Zhang, Z. Gong, and X. Gao, “Broadband difference frequency generation around 4.2 μm at overlapped phase-match conditions,” Opt. Commun. 281(14), 3878–3881 (2008).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Signal wavelength as a function of crystal temperature under perfect QPM condition for different given pump wavelengths; (b) Phase mismatch as a function of the signal wavelength with the pump wavelength of 1060nm for different given crystal temperatures.

Fig. 2
Fig. 2

(a) Pump wavelength as a function of the crystal temperature under perfect QPM condition for different given signal wavelengths; (b) Phase mismatch as a function of the pump wavelength with the signal wavelength of 1560nm for different given crystal temperatures.

Fig. 3
Fig. 3

(a) Schematic diagram of the mid-IR multiwavelength DFG laser source; (b) Configuration of the multiwavelength YDFL; (c) Measured multiwavelength output spectrum of the multiwavelength YDFL.

Fig. 4
Fig. 4

Measured output spectrum of the DFG laser source with (a) T = 73.5°C and (b) T = 75°C, and calculated normalized conversion efficiency with (c) T = 73.5°C and (d) T = 75°C.

Fig. 5
Fig. 5

Measured output spectrum of the DFG laser source, (a) λs = 1548nm, T = 33.8°C; (b) λs = 1580nm, T = 129.3°C.

Fig. 6
Fig. 6

Measured output spectrum of the multiwavelength EDFL cascaded by an EDFA.

Fig. 7
Fig. 7

Measured output spectrum of the DFG laser source and calculated normalized conversion efficiency (CE) curves for different crystal temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ k = 2 π ( n p / λ p n s / λ s n i / λ i 1 / Λ )
| 2 π ( n p / λ p n s / λ s n i / λ i 1 / Λ ) | = 0.8858 π / L

Metrics