Abstract

In the mode-division multiplexing (MDM) optical transmission system, a mode multi/demultiplexer is an important key device for excitation, multiplication, and separation of light signals which have distinct modes. In this report, we propose a fiber-type mode multi/demultiplexer based on selective phase matching between different cores/modes. Design method and device characteristics of 1×4 mode multi/demultiplexer are investigated through finite element analysis. In order to expand operating wavelength range, we reveal the structural parameters that satisfy phase matching conditions over wide wavelength range. Our numerical results demonstrate that the mode multi/demultiplexer with broadband, polarization-insensitive operation can be realized by applying the proposed fiber structure.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: Proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
    [CrossRef]
  2. Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
    [CrossRef]
  3. T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” Opto Electronics and Communications Conference (2009), FT4.
  4. R. W. C. Vance and J. D. Love, “Asymmetric adiabatic multiprong for mode-multiplexed systems,” Electron. Lett. 29(24), 2134–2136 (1993).
    [CrossRef]
  5. Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
    [CrossRef]
  6. E. Narevicius, “Method and apparatus for optical mode division multiplexing and demultiplexing,” U.S. Patent Appl. 20050254750, Nov. 2005.
  7. M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun. 266(2), 527–531 (2006).
    [CrossRef]
  8. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [CrossRef]
  9. K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(3), 405–413 (2001).
    [CrossRef]

2009 (2)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: Proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[CrossRef]

2006 (1)

M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun. 266(2), 527–531 (2006).
[CrossRef]

2002 (2)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[CrossRef]

2001 (1)

1993 (1)

R. W. C. Vance and J. D. Love, “Asymmetric adiabatic multiprong for mode-multiplexed systems,” Electron. Lett. 29(24), 2134–2136 (1993).
[CrossRef]

Greenberg, M.

M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun. 266(2), 527–531 (2006).
[CrossRef]

Kawaguchi, Y.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[CrossRef]

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: Proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[CrossRef]

Koshiba, M.

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[CrossRef]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: Proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(3), 405–413 (2001).
[CrossRef]

Love, J. D.

R. W. C. Vance and J. D. Love, “Asymmetric adiabatic multiprong for mode-multiplexed systems,” Electron. Lett. 29(24), 2134–2136 (1993).
[CrossRef]

Orenstein, M.

M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun. 266(2), 527–531 (2006).
[CrossRef]

Saitoh, K.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: Proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol. 19(3), 405–413 (2001).
[CrossRef]

Tsutsumi, K.

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[CrossRef]

Vance, R. W. C.

R. W. C. Vance and J. D. Love, “Asymmetric adiabatic multiprong for mode-multiplexed systems,” Electron. Lett. 29(24), 2134–2136 (1993).
[CrossRef]

Electron. Lett. (2)

R. W. C. Vance and J. D. Love, “Asymmetric adiabatic multiprong for mode-multiplexed systems,” Electron. Lett. 29(24), 2134–2136 (1993).
[CrossRef]

Y. Kawaguchi and K. Tsutsumi, “Mode multiplexing and demultiplexing devices using multimode interference couplers,” Electron. Lett. 38(25), 1701–1702 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: Application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

IEICE Electron. Express (2)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: Proposal and design principle,” IEICE Electron. Express 6(2), 98–103 (2009).
[CrossRef]

Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Express 6(8), 522–528 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

M. Greenberg and M. Orenstein, “Simultaneous dual mode add/drop multiplexers for optical interconnects buses,” Opt. Commun. 266(2), 527–531 (2006).
[CrossRef]

Other (2)

T. Morioka, “New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond,” Opto Electronics and Communications Conference (2009), FT4.

E. Narevicius, “Method and apparatus for optical mode division multiplexing and demultiplexing,” U.S. Patent Appl. 20050254750, Nov. 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic configuration of the 1×4 mode multi/demultiplexer. (b) Cross section of the 1×4 mode multi/demultiplexer.

Fig. 2
Fig. 2

Effective index of the fundamental mode in core 0~3 at a wavelength of 1.55 μm, with d0~3 = 2 μm, 3 μm, 5 μm, as a function of n0~3.

Fig. 3
Fig. 3

Structural parameter conditions for achieving selective phase matching.

Fig. 4
Fig. 4

Wavelength dependence of the effective index of (a) the fundamental coupled mode and the outer core-0 mode, (b) the first-order coupled mode and the outer core-1 mode, (c) the second-order coupled mode and the outer core-2 mode, (d) the third-order coupled mode and the outer core-3 mode. The structural parameters of core 0~3 are set as in Table 1.

Fig. 5
Fig. 5

Coupling length Lc of the each coupled mode as a function of D0~3.

Fig. 6
Fig. 6

Electric field distributions at propagation lengths of z = (0, Lc/3, 2Lc/3, Lc) at a wavelength of 1.55 μm (Demultiplexing of the fundamental coupled mode).

Fig. 7
Fig. 7

Electric field distributions at propagation lengths of z = (0, Lc/3, 2Lc/3, Lc) at a wavelength of 1.55 μm (Multiplexing of the fundamental coupled mode).

Fig. 8
Fig. 8

Wavelength dependence of the normalized output power for (a) the x-polarized and (b) the y-polarized modes at the fiber output end (L=0.7 cm) in core 0~3.

Fig. 9
Fig. 9

Effects of variation of the surrounding core diameters on the cross talk for (a)~(d) the x-polarized and (e)~(h) the y-polarized modes.

Tables (2)

Tables Icon

Table 1 Structural parameters of core 0~3 for broadband, polarization-insensitive operation.

Tables Icon

Table 2 Cross talk (in dB) between each core at a wavelength of 1.55 μm

Metrics