Abstract

An ultra-broadband photonic transport system has been developed to expand the usable wavelength bandwidth for optical communication. Simultaneous 3 × 10-Gbps error-free photonic transmissions are demonstrated in the 1-μm, C-, and L-wavebands by using the ultra-broadband photonic transport system over a 5.4-km-long holey fiber transmission line.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Polarization division multiplexed 4 × 10 Gbps simultaneous transmissions in 1.0-µm waveband and C-waveband over a 14.4-km-long holey fiber using an ultra-broadband photonic transport system

Yu Omigawa, Naokatsu Yamamoto, Atsushi Kanno, Tetsuya Kawanishi, Yasuaki Kurata, and Hideyuki Sotobayashi
Opt. Express 20(14) 14864-14870 (2012)

10-Gbps, 1-µm waveband photonic transmission with a harmonically mode-locked semiconductor laser

Naokatsu Yamamoto, Hideyuki Sotobayashi, Kouichi Akahane, Masahiro Tsuchiya, Keijiro Takashima, and Hiroyuki Yokoyama
Opt. Express 16(24) 19836-19843 (2008)

Narrow-line-width 1.31-μm wavelength tunable quantum dot laser using sandwiched sub-nano separator growth technique

Naokatsu Yamamoto, Kouichi Akahane, Tetsuya Kawanishi, Yu Omigawa, Hideyuki Sotobayashi, Yuki Yoshioka, and Hiroshi Takai
Opt. Express 19(26) B636-B644 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in Proc. of OFC2007, Anaheim, CA, PDP19.
  2. N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
    [Crossref]
  3. N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
    [Crossref] [PubMed]
  4. K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10 Gb/s WDM transmission at 1064 and 1550 nm over 24km PCF with negative power penalties,” Proc. of OECC2007, Yokohama, 12C1–3.
  5. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbiumdoped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  6. R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G (2009).
    [Crossref]
  7. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [Crossref]
  8. N.Yamamoto, R. Katouf, K. Akahane, T. Kawanishi, H. Sotobayashi, “1-μm waveband, 10Gbps transmission with a wavelength tunable single-mode selected quantum-dot optical frequency comb laser,” Proc. of OFC2009, San Diego, OWJ4. 6.
  9. N. Yamamoto, K. Akahane1, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. (to be published).
  10. H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
    [Crossref]
  11. K. Mukasa, K. Imamura, R. Sugizaki, and T. Yagi, “Comparisons of merits on wideband transmission systems between using extremely improved solid SMFs with Aeff of 160mm2 and loss of 0.175dB/km and using large-Aeff holey fibers enabling transmission over 600nm bandwidth,” Proc. of OFC2008, San Diego, OThR1.
  12. K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).
  13. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13(1), 267–274 (2005).
    [Crossref] [PubMed]
  14. P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. QE-21, 12 (1985).

2009 (2)

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G (2009).
[Crossref]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
[Crossref]

2008 (1)

2007 (2)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).

2006 (1)

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[Crossref]

2005 (1)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbiumdoped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

1985 (1)

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. QE-21, 12 (1985).

Aiso, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).

Akahane, K.

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G (2009).
[Crossref]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[Crossref] [PubMed]

Akahane1, K.

N. Yamamoto, K. Akahane1, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. (to be published).

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbiumdoped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Hasegawa, H.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[Crossref]

Henry, P. S.

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. QE-21, 12 (1985).

Hirooka, T.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[Crossref]

Imamura, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).

Katouf, R.

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G (2009).
[Crossref]

N. Yamamoto, K. Akahane1, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. (to be published).

Kawanishi, T.

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G (2009).
[Crossref]

N. Yamamoto, K. Akahane1, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. (to be published).

Koshiba, M.

Miyabe, R.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).

Mukasa, K.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).

Nakazawa, M.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[Crossref]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbiumdoped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Oikawa, Y.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbiumdoped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Saitoh, K.

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Sotobayashi, H.

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G (2009).
[Crossref]

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
[Crossref]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[Crossref] [PubMed]

N. Yamamoto, K. Akahane1, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. (to be published).

Sugizaki, R.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).

Takashima, K.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbiumdoped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Tsuchiya, M.

Yagi, T.

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).

Yamamoto, N.

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
[Crossref]

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G (2009).
[Crossref]

N. Yamamoto, H. Sotobayashi, K. Akahane, M. Tsuchiya, K. Takashima, and H. Yokoyama, “10-Gbps, 1-microm waveband photonic transmission with a harmonically mode-locked semiconductor laser,” Opt. Express 16(24), 19836–19843 (2008).
[Crossref] [PubMed]

N. Yamamoto, K. Akahane1, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. (to be published).

Yokoyama, H.

Yoshida, M.

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbiumdoped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

P. S. Henry, “Lightwave primer,” IEEE J. Quantum Electron. QE-21, 12 (1985).

IEICE Electron. Express (1)

H. Hasegawa, Y. Oikawa, M. Yoshida, T. Hirooka, and M. Nakazawa, “10Gb/s transmission over 5 km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD,” IEICE Electron. Express 3(6), 109–114 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Yamamoto, K. Akahane1, T. Kawanishi, R. Katouf, and H. Sotobayashi, “Quantum dot optical frequency comb laser with mode-selection technique for 1-μm waveband photonic transport system,” Jpn. J. Appl. Phys. (to be published).

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Opt. Express (2)

Proc. SPIE (3)

K. Mukasa, R. Miyabe, K. Imamura, K. Aiso, R. Sugizaki, and T. Yagi, “Hole assisted fibers (HAFs) and holey fibers (HFs) for short-wavelength applications,” Proc. SPIE 6769, 67690J (2007).

N. Yamamoto and H. Sotobayashi, “All-band photonic transport system and its device,” Proc. SPIE 7235, 72350C (2009).
[Crossref]

R. Katouf, N. Yamamoto, K. Akahane, T. Kawanishi, and H. Sotobayashi, “1-µm- band transmission by use of a wavelength tunable quantum-dot laser over a hole-assisted fiber,” Proc. SPIE 7234, 72340G (2009).
[Crossref]

Other (4)

N.Yamamoto, R. Katouf, K. Akahane, T. Kawanishi, H. Sotobayashi, “1-μm waveband, 10Gbps transmission with a wavelength tunable single-mode selected quantum-dot optical frequency comb laser,” Proc. of OFC2009, San Diego, OWJ4. 6.

K. Kurokawa, K. Tsujikawa, K. Tajima, K. Nakajima, and I. Sankawa, “10 Gb/s WDM transmission at 1064 and 1550 nm over 24km PCF with negative power penalties,” Proc. of OECC2007, Yokohama, 12C1–3.

K. Mukasa, K. Imamura, R. Sugizaki, and T. Yagi, “Comparisons of merits on wideband transmission systems between using extremely improved solid SMFs with Aeff of 160mm2 and loss of 0.175dB/km and using large-Aeff holey fibers enabling transmission over 600nm bandwidth,” Proc. of OFC2008, San Diego, OThR1.

A. H. Gnauck, G. Charlet, P. Tran, P. Winzer, C. Doerr, J. Centanni, E. Burrows, T. Kawanishi, T. Sakamoto, and K. Higuma, “25.6-Tb/s C+L-Band Transmission of Polarization-Multiplexed RZ-DQPSK Signals,” in Proc. of OFC2007, Anaheim, CA, PDP19.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Ultra-broadband photonic transport system using a holey fiber transmission line

Fig. 2
Fig. 2

(a) Simulated optical modes in the holey fiber of wavelengths of 1050- and 1550-nm. (b) Transmission loss and (c) dispersion characteristics of a fabricated holey fiber used as the transmission line for the ultra-broadband photonic transport system.

Fig. 3
Fig. 3

Optical spectra (a) before transmission, (b) after transmission, and (c) optical spectra in 1-μm, C-, and L-wavebands at the receiving port-A of the 1-μm waveband

Fig. 4
Fig. 4

Eye diagrams before and after transmission in the 1-μm, C-, and L-wavebands without and with CDR.

Fig. 5
Fig. 5

BERs vs. received power of (a) 1-μm, (b) C-, and (c) L-wavebands.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

B 0.22 c | σ | L 1 λ 0

Metrics