Abstract

Stable sub-10-fs pulses useful for many pump-probe experiments with center wavelength at 400 nm were obtained using a hollow-fiber compression technique with a beam-pointing stabilizing system. The output power stability was improved by around 2-times with the beam-pointing stabilizer. A 1-mm-thick cell sample of perylene dissolved in cyclohexane was used to test the pulse using for the pump-probe experiment. Even the high C-H stretching of vibration mode at around 2860 cm−1, 2916 cm−1, and 2955 cm−1 were real-time resolved with vibrational phase information.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
    [CrossRef]
  2. X. Ultrafast Phenomena, IV, edited by T. Kobayashi, T. Okada, K. A. Nelson, and S. De Silvestri (Springer, New York, 2004), Vol. 79.
  3. T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
    [CrossRef] [PubMed]
  4. S. Adachi, V. M. Kobryanskii, and T. Kobayashi, “Excitation of a breather mode of bound soliton pairs in trans-polyacetylene by sub-5-fs optical pulses,” Phys. Rev. Lett. 89(2), 027401 (2002).
    [CrossRef] [PubMed]
  5. T. Kobayashi, I. Iwakura, and A. Yabushita, “Excitonic and vibrational nonlinear processes in a polydiacetylene studied by a few-cycle pulse laser,” N. J. Phys. 10(6), 065016 (2008).
    [CrossRef]
  6. T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electrinic transition studied by using real-time vibration spectroscopy,” N. J. Phys. 10(6), 065009 (2008).
    [CrossRef]
  7. I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131(2), 688–696 (2009).
    [CrossRef]
  8. G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
    [CrossRef] [PubMed]
  9. D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
    [CrossRef]
  10. I. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11(23), 3110–3115 (2003).
    [CrossRef] [PubMed]
  11. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004).
    [CrossRef] [PubMed]
  12. B. Zhao, Y. Jiang, K. Sueda, N. Miyanaga, and T. Kobayashi, “Sub-15fs ultraviolet pulses generated by achromatic phase-matching sum-frequency mixing,” Opt. Express 17(20), 17711–17714 (2009).
    [CrossRef] [PubMed]
  13. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [CrossRef]
  14. M. Giguère, B. E. Schmidt, A. D. Shiner, M. A. Houle, H. C. Bandulet, G. Tempea, D. M. Villeneuve, J. C. Kieffer, and F. Légaré, “Pulse compression of submillijoule few-optical-cycle infrared laser pulses using chirped mirrors,” Opt. Lett. 34(12), 1894–1896 (2009).
    [CrossRef] [PubMed]
  15. O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8-fs pulses at 400 nm,” Opt. Lett. 24(1), 34–36 (1999).
    [CrossRef]
  16. T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
    [CrossRef]
  17. R. Trebino, Frequency-Resolved Optical Grating: The Measurement of Ultrashort Laser Pulses, (Kluwer Academic Publishers), 237–250 (2000).
  18. T. Teramoto, E. Tokunaga, and T. Kobayashi, “Two dimensional detection system for broadband spectroscopy by using multi-channel lock-in amplifiers,” (in prepare).
  19. B. Brüggemann, P. Persson, H.-D. Meyer, and V. May, “Frequency dispersed transient absorption spectra of dissolved perylene: A case study using the density matrix version of the MCTDH method,” Chem. Phys. 347(1-3), 152–165 (2008).
    [CrossRef]
  20. A. L. Dobryakov and N. P. Ernsting, “Lineshapes for resonant impulsive stimulated Raman scattering with chirped pump and supercontinuum probe pulses,” J. Chem. Phys. 129(18), 184504 (2008).
    [CrossRef] [PubMed]
  21. Y. H. Meyer and P. Plaza, “Ultrafast excited singlet state absorption/gain spectroscopy of perylene in solution,” Chem. Phys. 200(1-2), 235–243 (1995).
    [CrossRef]

2009

2008

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
[CrossRef]

B. Brüggemann, P. Persson, H.-D. Meyer, and V. May, “Frequency dispersed transient absorption spectra of dissolved perylene: A case study using the density matrix version of the MCTDH method,” Chem. Phys. 347(1-3), 152–165 (2008).
[CrossRef]

A. L. Dobryakov and N. P. Ernsting, “Lineshapes for resonant impulsive stimulated Raman scattering with chirped pump and supercontinuum probe pulses,” J. Chem. Phys. 129(18), 184504 (2008).
[CrossRef] [PubMed]

D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
[CrossRef]

T. Kobayashi, I. Iwakura, and A. Yabushita, “Excitonic and vibrational nonlinear processes in a polydiacetylene studied by a few-cycle pulse laser,” N. J. Phys. 10(6), 065016 (2008).
[CrossRef]

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electrinic transition studied by using real-time vibration spectroscopy,” N. J. Phys. 10(6), 065009 (2008).
[CrossRef]

2004

2003

2002

G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
[CrossRef] [PubMed]

S. Adachi, V. M. Kobryanskii, and T. Kobayashi, “Excitation of a breather mode of bound soliton pairs in trans-polyacetylene by sub-5-fs optical pulses,” Phys. Rev. Lett. 89(2), 027401 (2002).
[CrossRef] [PubMed]

2001

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

2000

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[CrossRef]

1999

1996

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

1995

Y. H. Meyer and P. Plaza, “Ultrafast excited singlet state absorption/gain spectroscopy of perylene in solution,” Chem. Phys. 200(1-2), 235–243 (1995).
[CrossRef]

Adachi, S.

S. Adachi, V. M. Kobryanskii, and T. Kobayashi, “Excitation of a breather mode of bound soliton pairs in trans-polyacetylene by sub-5-fs optical pulses,” Phys. Rev. Lett. 89(2), 027401 (2002).
[CrossRef] [PubMed]

Antognazza, M. R.

D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
[CrossRef]

Bandulet, H. C.

Baum, P.

Bohman, S.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
[CrossRef]

Brida, D.

D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
[CrossRef]

Brüggemann, B.

B. Brüggemann, P. Persson, H.-D. Meyer, and V. May, “Frequency dispersed transient absorption spectra of dissolved perylene: A case study using the density matrix version of the MCTDH method,” Chem. Phys. 347(1-3), 152–165 (2008).
[CrossRef]

Cerullo, G.

D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
[CrossRef]

G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
[CrossRef] [PubMed]

Cogdell, R. J.

G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
[CrossRef] [PubMed]

De Silvestri, S.

D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
[CrossRef]

G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
[CrossRef] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Dobryakov, A. L.

A. L. Dobryakov and N. P. Ernsting, “Lineshapes for resonant impulsive stimulated Raman scattering with chirped pump and supercontinuum probe pulses,” J. Chem. Phys. 129(18), 184504 (2008).
[CrossRef] [PubMed]

Dühr, O.

Ernsting, N. P.

A. L. Dobryakov and N. P. Ernsting, “Lineshapes for resonant impulsive stimulated Raman scattering with chirped pump and supercontinuum probe pulses,” J. Chem. Phys. 129(18), 184504 (2008).
[CrossRef] [PubMed]

Giguère, M.

Hashimoto, H.

G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
[CrossRef] [PubMed]

Houle, M. A.

Iwakura, I.

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131(2), 688–696 (2009).
[CrossRef]

T. Kobayashi, I. Iwakura, and A. Yabushita, “Excitonic and vibrational nonlinear processes in a polydiacetylene studied by a few-cycle pulse laser,” N. J. Phys. 10(6), 065016 (2008).
[CrossRef]

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electrinic transition studied by using real-time vibration spectroscopy,” N. J. Phys. 10(6), 065009 (2008).
[CrossRef]

Jiang, Y.

Kaku, M.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
[CrossRef]

Kanai, T.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
[CrossRef]

Kieffer, J. C.

Kobayashi, T.

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131(2), 688–696 (2009).
[CrossRef]

B. Zhao, Y. Jiang, K. Sueda, N. Miyanaga, and T. Kobayashi, “Sub-15fs ultraviolet pulses generated by achromatic phase-matching sum-frequency mixing,” Opt. Express 17(20), 17711–17714 (2009).
[CrossRef] [PubMed]

T. Kobayashi, I. Iwakura, and A. Yabushita, “Excitonic and vibrational nonlinear processes in a polydiacetylene studied by a few-cycle pulse laser,” N. J. Phys. 10(6), 065016 (2008).
[CrossRef]

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electrinic transition studied by using real-time vibration spectroscopy,” N. J. Phys. 10(6), 065009 (2008).
[CrossRef]

S. Adachi, V. M. Kobryanskii, and T. Kobayashi, “Excitation of a breather mode of bound soliton pairs in trans-polyacetylene by sub-5-fs optical pulses,” Phys. Rev. Lett. 89(2), 027401 (2002).
[CrossRef] [PubMed]

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

T. Teramoto, E. Tokunaga, and T. Kobayashi, “Two dimensional detection system for broadband spectroscopy by using multi-channel lock-in amplifiers,” (in prepare).

Kobryanskii, V. M.

S. Adachi, V. M. Kobryanskii, and T. Kobayashi, “Excitation of a breather mode of bound soliton pairs in trans-polyacetylene by sub-5-fs optical pulses,” Phys. Rev. Lett. 89(2), 027401 (2002).
[CrossRef] [PubMed]

Korn, G.

Kozma, I.

Krausz, F.

Lanzani, G.

D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
[CrossRef]

G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
[CrossRef] [PubMed]

Légaré, F.

Lochbrunner, S.

May, V.

B. Brüggemann, P. Persson, H.-D. Meyer, and V. May, “Frequency dispersed transient absorption spectra of dissolved perylene: A case study using the density matrix version of the MCTDH method,” Chem. Phys. 347(1-3), 152–165 (2008).
[CrossRef]

Meyer, H.-D.

B. Brüggemann, P. Persson, H.-D. Meyer, and V. May, “Frequency dispersed transient absorption spectra of dissolved perylene: A case study using the density matrix version of the MCTDH method,” Chem. Phys. 347(1-3), 152–165 (2008).
[CrossRef]

Meyer, Y. H.

Y. H. Meyer and P. Plaza, “Ultrafast excited singlet state absorption/gain spectroscopy of perylene in solution,” Chem. Phys. 200(1-2), 235–243 (1995).
[CrossRef]

Midorikawa, K.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
[CrossRef]

Miyanaga, N.

Nibbering, E. T. J.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Ohtani, H.

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

Persson, P.

B. Brüggemann, P. Persson, H.-D. Meyer, and V. May, “Frequency dispersed transient absorption spectra of dissolved perylene: A case study using the density matrix version of the MCTDH method,” Chem. Phys. 347(1-3), 152–165 (2008).
[CrossRef]

Plaza, P.

Y. H. Meyer and P. Plaza, “Ultrafast excited singlet state absorption/gain spectroscopy of perylene in solution,” Chem. Phys. 200(1-2), 235–243 (1995).
[CrossRef]

Polli, D.

D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
[CrossRef]

G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
[CrossRef] [PubMed]

Riedle, E.

Saito, T.

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

Schmidt, B. E.

Shiner, A. D.

Suda, A.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
[CrossRef]

Sueda, K.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Tempea, G.

Teramoto, T.

T. Teramoto, E. Tokunaga, and T. Kobayashi, “Two dimensional detection system for broadband spectroscopy by using multi-channel lock-in amplifiers,” (in prepare).

Tokunaga, E.

T. Teramoto, E. Tokunaga, and T. Kobayashi, “Two dimensional detection system for broadband spectroscopy by using multi-channel lock-in amplifiers,” (in prepare).

Villeneuve, D. M.

Wang, Z.

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electrinic transition studied by using real-time vibration spectroscopy,” N. J. Phys. 10(6), 065009 (2008).
[CrossRef]

Yabushita, A.

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131(2), 688–696 (2009).
[CrossRef]

T. Kobayashi, I. Iwakura, and A. Yabushita, “Excitonic and vibrational nonlinear processes in a polydiacetylene studied by a few-cycle pulse laser,” N. J. Phys. 10(6), 065016 (2008).
[CrossRef]

Yamaguchi, S.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
[CrossRef]

Zewail, A. H.

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[CrossRef]

Zhao, B.

Appl. Phys. Lett.

T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92(6), 061106 (2008).
[CrossRef]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[CrossRef]

Chem. Phys.

D. Polli, M. R. Antognazza, D. Brida, G. Lanzani, G. Cerullo, and S. De Silvestri, “Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids,” Chem. Phys. 350(1-3), 45–55 (2008).
[CrossRef]

Y. H. Meyer and P. Plaza, “Ultrafast excited singlet state absorption/gain spectroscopy of perylene in solution,” Chem. Phys. 200(1-2), 235–243 (1995).
[CrossRef]

B. Brüggemann, P. Persson, H.-D. Meyer, and V. May, “Frequency dispersed transient absorption spectra of dissolved perylene: A case study using the density matrix version of the MCTDH method,” Chem. Phys. 347(1-3), 152–165 (2008).
[CrossRef]

J. Am. Chem. Soc.

I. Iwakura, A. Yabushita, and T. Kobayashi, “Transition states and nonlinear excitations in chloroform observed with a sub-5 fs pulse laser,” J. Am. Chem. Soc. 131(2), 688–696 (2009).
[CrossRef]

J. Chem. Phys.

A. L. Dobryakov and N. P. Ernsting, “Lineshapes for resonant impulsive stimulated Raman scattering with chirped pump and supercontinuum probe pulses,” J. Chem. Phys. 129(18), 184504 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. A

A. H. Zewail, “Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000).
[CrossRef]

N. J. Phys.

T. Kobayashi, I. Iwakura, and A. Yabushita, “Excitonic and vibrational nonlinear processes in a polydiacetylene studied by a few-cycle pulse laser,” N. J. Phys. 10(6), 065016 (2008).
[CrossRef]

T. Kobayashi, Z. Wang, and I. Iwakura, “The relation between the symmetry of vibrational modes and the potential curve displacement associated with electrinic transition studied by using real-time vibration spectroscopy,” N. J. Phys. 10(6), 065009 (2008).
[CrossRef]

Nature

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. Adachi, V. M. Kobryanskii, and T. Kobayashi, “Excitation of a breather mode of bound soliton pairs in trans-polyacetylene by sub-5-fs optical pulses,” Phys. Rev. Lett. 89(2), 027401 (2002).
[CrossRef] [PubMed]

Science

G. Cerullo, D. Polli, G. Lanzani, S. De Silvestri, H. Hashimoto, and R. J. Cogdell, “Photosynthetic light harvesting by carotenoids: detection of an intermediate excited state,” Science 298(5602), 2395–2398 (2002).
[CrossRef] [PubMed]

Other

X. Ultrafast Phenomena, IV, edited by T. Kobayashi, T. Okada, K. A. Nelson, and S. De Silvestri (Springer, New York, 2004), Vol. 79.

R. Trebino, Frequency-Resolved Optical Grating: The Measurement of Ultrashort Laser Pulses, (Kluwer Academic Publishers), 237–250 (2000).

T. Teramoto, E. Tokunaga, and T. Kobayashi, “Two dimensional detection system for broadband spectroscopy by using multi-channel lock-in amplifiers,” (in prepare).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Schematic of the 400nm hollow-fiber compressor and the pump-probe experimental setup; SHG: second-harmonic generation; CM1, CM2: chirped mirror; DM: dichroic mirror; VND: 0.1-mm-thick variable neutral-density filter; BS: 0.5-mm-thick beam splitter; CP1: compensate plate for VND; CP2: compensate plate for BS; SP: sample for pump-probe spectroscopy or BBO crystal for pulse characterization; MLA: 128-channel multi-lock-in amplifier; PSD: position sensing detector.; USB 4000: spectrometer. CCD: Charge Coupled Device (CCD) camera

Fig. 2
Fig. 2

(Color online) Beam-pointing position detected using a CCD camera at the focal point (a) without the beam-pointing stabilizer; (b) with the beam-pointing stabilizer. (c) Output power stability after the hollow fiber without (left line) and with (right line) the beam-pointing stabilizer.

Fig. 3
Fig. 3

(Color online) The spectral profile of the output pulse after the hollow fiber at different argon gas pressures. 0 atm: black solid line; 0.33 atm: red dotted line; 0.66 atm: green dash-dot line; 0.97 atm: blue dash-dot-dot line; 1.30 atm: cyan dash line. The inset pattern was the beam profile after the hollow fiber

Fig. 4
Fig. 4

(Color online) (a) Spectra of the compressed 400 nm pulse (red solid) before the sample, the retrieved spectrum (magenta dotted), and that of the maximum SD signal (black dashed) in the measurement. The blue dashed line is the retrieve spectral phase; (b) The retrieved temporal intensity profile and temporal phase (blue solid line) of the compressed pulse. The inset is the measured SD-FROG trace.

Fig. 5
Fig. 5

(Color online) Two-dimensional pattern of the difference absorbance (dA) of probe dependent on the time delay between the pump and probe pulse from −100fs to 1900fs in the whole probe spectral region (2.84-3.48eV).

Fig. 6
Fig. 6

(a) The traces of difference absorbance (dA) plotted against the pump-probe delay time at several different probe photon energies (3.40eV, 3.28eV, 3.16eV, 3.05eV, 2.94eV, 2.89eV, and 2.86eV); (b) the Fourier- transform amplitude spectra of the traces in Fig. 6(a).

Metrics