Abstract

This work presents a simple compensation method for widening the viewing angle of transflective liquid-crystal displays (TR-LCDs). For an off-axis light, the slow axis of a biaxial film shifts linearly as the Nz factor is varied. By using this optical characteristic of a biaxial film, the broadband condition of broadband circular polarizers exactly holds over a full 80° viewing cone, thus eliminating the off-axis light leakage to widen the viewing angle of TR-LCDs. Based on the proposed compensation method, the TR-LCDs theoretically have a wide spectral bandwidth and a viewing angle of 80° for contrast-ratio (CR) >100:1 and >30:1 in transmissive and reflective modes, respectively. Experiments also show that the proposed TR-LCD has a viewing angle of over the entire 80° and 65° viewing cone in T-mode and R-mode, respectively, for CR>10:1. The proposed TR-LCD is highly promising for mobile display applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
  2. M. Okamoto, H. Hiraki, and S. Mitsui, “Liquid crystal display,” U.S. Patent 6,281,952 (2001).
  3. M. Shimizu, Y. Itoh, and M. Kubo, “Liquid crystal display device,” U.S. Patent 6,341,002 (2002).
  4. J. H. Song, Y. J. Lim, M. H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal display associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87(1), 011108 (2005).
    [CrossRef]
  5. H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, “Wide-view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
    [CrossRef]
  6. R. Lu, Z. Ge, and S. T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structures,” Appl. Phys. Lett. 92(19), 191102 (2008).
    [CrossRef]
  7. T. H. Yoon, G. D. Lee, and J. C. Kim, “Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display,” Opt. Lett. 25(20), 1547–1549 (2000).
    [CrossRef]
  8. P. Yeh, and C. Gu, Optics Of Liquid Crystal Displays (Wiley, New York, 1999).
  9. C. H. Lin, “Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays,” Appl. Phys. Lett. 90(15), 151112 (2007).
    [CrossRef]
  10. Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
    [CrossRef] [PubMed]
  11. Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
    [CrossRef]
  12. O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).
  13. Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers 22, 739–742 (1991).
  14. C. H. Lin, “Optically compensated circular polarizers for liquid crystal displays,” Opt. Express 16(17), 13276–13286 (2008).
    [CrossRef] [PubMed]
  15. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
    [CrossRef]

2008 (3)

R. Lu, Z. Ge, and S. T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structures,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

C. H. Lin, “Optically compensated circular polarizers for liquid crystal displays,” Opt. Express 16(17), 13276–13286 (2008).
[CrossRef] [PubMed]

2007 (2)

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, “Wide-view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

C. H. Lin, “Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays,” Appl. Phys. Lett. 90(15), 151112 (2007).
[CrossRef]

2006 (1)

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

2005 (2)

J. H. Song, Y. J. Lim, M. H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal display associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87(1), 011108 (2005).
[CrossRef]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
[CrossRef] [PubMed]

2000 (1)

1991 (1)

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers 22, 739–742 (1991).

1990 (1)

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

Fujimura, Y.

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers 22, 739–742 (1991).

Ge, Z.

R. Lu, Z. Ge, and S. T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structures,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, “Wide-view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

Hirota, S.

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

Hong, Q.

Igeta, K.

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

Imayama, H.

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

Itou, O.

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

Jiao, M.

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

Kim, H. Y.

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, “Wide-view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

Kim, J. C.

Komura, S.

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

Lee, G. D.

Lee, M. H.

J. H. Song, Y. J. Lim, M. H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal display associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87(1), 011108 (2005).
[CrossRef]

Lee, S. H.

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, “Wide-view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

J. H. Song, Y. J. Lim, M. H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal display associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87(1), 011108 (2005).
[CrossRef]

Li, W. Y.

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

Lien, A.

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

Lim, Y. J.

J. H. Song, Y. J. Lim, M. H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal display associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87(1), 011108 (2005).
[CrossRef]

Lin, C. H.

C. H. Lin, “Optically compensated circular polarizers for liquid crystal displays,” Opt. Express 16(17), 13276–13286 (2008).
[CrossRef] [PubMed]

C. H. Lin, “Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays,” Appl. Phys. Lett. 90(15), 151112 (2007).
[CrossRef]

Lu, R.

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

R. Lu, Z. Ge, and S. T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structures,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
[CrossRef] [PubMed]

Morimoto, M.

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

Nagata, T.

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

Nagatsuka, T.

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers 22, 739–742 (1991).

Shimomura, T.

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers 22, 739–742 (1991).

Shin, S. T.

J. H. Song, Y. J. Lim, M. H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal display associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87(1), 011108 (2005).
[CrossRef]

Song, J. H.

J. H. Song, Y. J. Lim, M. H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal display associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87(1), 011108 (2005).
[CrossRef]

Tanno, J.

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

Wei, C. K.

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

Wu, S. T.

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

R. Lu, Z. Ge, and S. T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structures,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, “Wide-view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
[CrossRef] [PubMed]

Wu, T. X.

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

Q. Hong, T. X. Wu, X. Zhu, R. Lu, and S. T. Wu, “Designs of wide-view and broadband circular polarizers,” Opt. Express 13(20), 8318–8331 (2005).
[CrossRef] [PubMed]

Yoon, T. H.

Yoshimi, H.

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers 22, 739–742 (1991).

Zhu, X.

Appl. Phys. Lett. (5)

J. H. Song, Y. J. Lim, M. H. Lee, S. H. Lee, and S. T. Shin, “Electro-optic characteristics and switching principle of a single-cell-gap transflective liquid-crystal display associated with in-plane rotation of liquid crystal driven by a fringe-field,” Appl. Phys. Lett. 87(1), 011108 (2005).
[CrossRef]

H. Y. Kim, Z. Ge, S. T. Wu, and S. H. Lee, “Wide-view transflective liquid crystal display for mobile applications,” Appl. Phys. Lett. 91(23), 231108 (2007).
[CrossRef]

R. Lu, Z. Ge, and S. T. Wu, “Wide-view and single cell gap transflective liquid crystal display using slit-induced multidomain structures,” Appl. Phys. Lett. 92(19), 191102 (2008).
[CrossRef]

C. H. Lin, “Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays,” Appl. Phys. Lett. 90(15), 151112 (2007).
[CrossRef]

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

J. Disp. Technol. (1)

Z. Ge, M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, “Wide-view and broadband circular polarizers for transflective liquid crystal displays,” J. Disp. Technol. 4(2), 129–138 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. Int. Display Workshops (1)

O. Itou, S. Hirota, J. Tanno, M. Morimoto, K. Igeta, H. Imayama, S. Komura, and T. Nagata, “A new transflective IPS-LCD with high contrast ratio and wide viewing angle performance,” Proc. Int. Display Workshops 06, 635–638 (2006).

SID Int. Symp. Digest Tech. Papers (1)

Y. Fujimura, T. Nagatsuka, H. Yoshimi, and T. Shimomura, “Optical properties of retardation films for STN-LCDs,” SID Int. Symp. Digest Tech. Papers 22, 739–742 (1991).

Other (4)

P. Yeh, and C. Gu, Optics Of Liquid Crystal Displays (Wiley, New York, 1999).

S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

M. Okamoto, H. Hiraki, and S. Mitsui, “Liquid crystal display,” U.S. Patent 6,281,952 (2001).

M. Shimizu, Y. Itoh, and M. Kubo, “Liquid crystal display device,” U.S. Patent 6,341,002 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cell configuration of compensated transflective LCD.

Fig. 2
Fig. 2

(a) Shift of slow axis in azimuthal angle Δψ under different Nz factors for off-axis light at viewing angle θ=80°. Refractive indices of biaxial films nx=1.511 and ny=1.5095 are used in the calculation. (b) Shift in azimuth angle of the proposed broadband circular polarizer between the normal direction and off-axis direction. O A ¯ ( O A ' ¯ ) is polarization state of normal (off-axis) incident light; and O B ¯ ( O B ' ¯ ), O C ¯ ( O C ' ¯ ) and O D ¯ ( O D ' ¯ ) denote the slow-axis orientations of the biaxial λ/2 plate of Nz=0.25, biaxial λ/2 plate of Nz=0.5 and biaxial λ/4 plate of Nz=0.5, respectively, for the normal (off-axis) direction.

Fig. 3
Fig. 3

(a) Isocontrast ratio curves of (a) MVA TR-LCDs, and (b) IPS TR-LCDs in T-mode and R-mode at λ=550nm. Cell parameters of MVA TR-LCDs used in calculation are as follows: ne=1.589, no=1.487, Δε=−4.0 with ε//=3.6, K11=14.1pN, K22=6.6pN, K33=16.3pN, dLC=4.0μm and 2.0μm for T-mode and R-mode, respectively, and refractive indices of two identical negative C-plates ne_C=1.5089, no_C=1.5124 with thickness of 53.97μm. Cell parameters of IPS TR-LCDs used in calculation are as follows: ne=1.549, no=1.476, Δε=10.9 with ε//=15.3, K11=7.4pN, K22=6.8pN, K33=16.2pN, and dLC=3.7μm and 1.85μm for T-mode and R-mode, respectively, and refractive indices of two identical negative A-plates ne_A=1.543, no_A = 1.6035 with thickness of 2.231μm.

Fig. 4
Fig. 4

Spectral light leakage of dark states of (a) T-mode and (b) R-mode at different viewing angles when viewed at ϕ=90°.

Fig. 5
Fig. 5

(a) Isocontrast ratio curves of (a) MVA TR-LCDs, and (b) IPS TR-LCDs in T-mode and R-mode when calculated with a white light source.

Fig. 6
Fig. 6

Isoluminance curves of bright states of (a) conventional MVA TR-LCDs, and (b) compensated MVA TR-LCDs in T-mode and R-mode.

Fig. 7
Fig. 7

Spectra of bright states of (a) T-mode and (b) R-mode at different viewing angles when viewed at ϕ=90°.

Fig. 8
Fig. 8

Photographs of bright states and dark states of a 2.5 inch TR-LCD with a conventional broadband circular polarizer (left) and wide-view broadband circular polarizer (right) in (a) T-mode and (b) R-mode at θ=50° from different viewing directions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ψ = tan 1 ( A B C 2 D E )
A = 2 ( n x 2 n y 2 ) [ n x N z ( n x n y ) ] 2 cos θ o
B = 2 n x 2 n y 2 sin 2 θ o sin 2 θ o { [ n x N z ( n x n y ) ] 2 n y 2 + n x 2 [ n x N z ( n x n y ) ] 2 }
C = 2 n y 2 n x 2 sin 2 θ o + ( cos 2 θ o + 1 ) { [ n x N z ( n x n y ) ] 2 n x 2 + [ n x N z ( n x n y ) ] 2 n y 2 }
D = 8 n x 2 n y 2 [ n x N z ( n x n y ) ] 2
E = n x 2 sin 2 θ o + n y 2 sin 2 θ o + 2 [ n x N z ( n x n y ) ] 2 cos 2 θ o

Metrics