Abstract

We present polarization-dependent optical transmission properties of a completely symmetric silicon-on-insulator (SOI) microphotonic material system. In contrast to typical SOI based photonic materials, here an insulator-on-silicon-on-insulator (IOSOI) material system has been fabricated. This symmetric structure exhibits average losses between 1510 and 1630 nm of around 0.5 dB/mm for TE and 0.3 dB/mm for TM-polarization. The good transmission for TM-polarization can be explained by the thick insulting cladding layer of 3 μm thickness. Moreover, group index dispersion diagrams are presented and discussed for both polarizations.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing

Martin F. Volk, Sergiy Suntsov, Christian E. Rüter, and Detlef Kip
Opt. Express 24(2) 1386-1391 (2016)

Giant birefringence in multi-slotted silicon nanophotonic waveguides

Shun-Hui Yang, Michael L. Cooper, Prabhakar R. Bandaru, and Shayan Mookherjea
Opt. Express 16(11) 8306-8316 (2008)

Silica-embedded silicon photonic crystal waveguides

T. P. White, L. O’Faolain, Juntao Li, L. C. Andreani, and T. F. Krauss
Opt. Express 16(21) 17076-17081 (2008)

References

  • View by:
  • |
  • |
  • |

  1. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
    [Crossref]
  2. K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [Crossref]
  3. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
    [Crossref] [PubMed]
  4. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
    [Crossref] [PubMed]
  5. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14, 12401–12408 (2006).
    [Crossref] [PubMed]
  6. A. P. Milenin, C. Jamois, R. B. Wehrspohn, and M. Reiche, “The SOI planar photonic crystal fabrication: patterning of Cr using Cl2/O2 plasma etching,” Microelectron. Eng. 77, 139–143 (2005).
    [Crossref]
  7. A. P. Milenin, C. Jamois, T. Geppert, U. Gösele, and R. B. Wehrspohn, “SOI planar photonic crystal fabrication: Etching through SiO2/Si/SiO2 layer systems using fluorocarbon plasmas,” Microelectron. Eng. 81, 15–21 (2005).
    [Crossref]
  8. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
    [Crossref]
  9. D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quantum Electron. 34, 1914–1923 (1998).
    [Crossref]
  10. A. Talneau, M. Mulot, S. Anand, and Ph. Lalanne, “Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,” Appl. Phys. Lett. 82, 2577–2579 (2003).
    [Crossref]
  11. P. Lambkin, C. Percival, and B. Corbett, “Reflectivity Measurements of Intracavity Defects in Laser Diodes,” IEEE J. Quantum Electron. 40, 10–17 (2004).
    [Crossref]
  12. D. Hofstetter and R. L. Thornton, “Loss measurements on semiconductor lasers by Fourier analysis of the emission spectra,” Appl. Phys. Lett. 72, 404–406 (1998).
    [Crossref]
  13. M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
    [Crossref]
  14. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12, 1583–1591 (2004).
    [Crossref] [PubMed]
  15. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  16. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
    [Crossref]

2008 (2)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[Crossref] [PubMed]

2006 (2)

2005 (3)

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

A. P. Milenin, C. Jamois, R. B. Wehrspohn, and M. Reiche, “The SOI planar photonic crystal fabrication: patterning of Cr using Cl2/O2 plasma etching,” Microelectron. Eng. 77, 139–143 (2005).
[Crossref]

A. P. Milenin, C. Jamois, T. Geppert, U. Gösele, and R. B. Wehrspohn, “SOI planar photonic crystal fabrication: Etching through SiO2/Si/SiO2 layer systems using fluorocarbon plasmas,” Microelectron. Eng. 81, 15–21 (2005).
[Crossref]

2004 (3)

2003 (2)

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
[Crossref]

A. Talneau, M. Mulot, S. Anand, and Ph. Lalanne, “Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,” Appl. Phys. Lett. 82, 2577–2579 (2003).
[Crossref]

2000 (1)

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

1998 (2)

D. Hofstetter and R. L. Thornton, “Loss measurements on semiconductor lasers by Fourier analysis of the emission spectra,” Appl. Phys. Lett. 72, 404–406 (1998).
[Crossref]

D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quantum Electron. 34, 1914–1923 (1998).
[Crossref]

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Agarwal, A.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Anand, S.

A. Talneau, M. Mulot, S. Anand, and Ph. Lalanne, “Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,” Appl. Phys. Lett. 82, 2577–2579 (2003).
[Crossref]

Andreani, L. C.

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[Crossref] [PubMed]

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
[Crossref]

Baets, R.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Corbett, B.

P. Lambkin, C. Percival, and B. Corbett, “Reflectivity Measurements of Intracavity Defects in Laser Diodes,” IEEE J. Quantum Electron. 40, 10–17 (2004).
[Crossref]

De La Rue, R. M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Dulkeith, E.

Dumon, P.

Foresi, J.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Fukuda, H.

Geppert, T.

A. P. Milenin, C. Jamois, T. Geppert, U. Gösele, and R. B. Wehrspohn, “SOI planar photonic crystal fabrication: Etching through SiO2/Si/SiO2 layer systems using fluorocarbon plasmas,” Microelectron. Eng. 81, 15–21 (2005).
[Crossref]

Gnan, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Gösele, U.

A. P. Milenin, C. Jamois, T. Geppert, U. Gösele, and R. B. Wehrspohn, “SOI planar photonic crystal fabrication: Etching through SiO2/Si/SiO2 layer systems using fluorocarbon plasmas,” Microelectron. Eng. 81, 15–21 (2005).
[Crossref]

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
[Crossref]

Green, W. M. J.

Hermann, C.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
[Crossref]

Hess, O.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
[Crossref]

Hofstetter, D.

D. Hofstetter and R. L. Thornton, “Loss measurements on semiconductor lasers by Fourier analysis of the emission spectra,” Appl. Phys. Lett. 72, 404–406 (1998).
[Crossref]

D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quantum Electron. 34, 1914–1923 (1998).
[Crossref]

Itabashi, S.

Jamois, C.

A. P. Milenin, C. Jamois, T. Geppert, U. Gösele, and R. B. Wehrspohn, “SOI planar photonic crystal fabrication: Etching through SiO2/Si/SiO2 layer systems using fluorocarbon plasmas,” Microelectron. Eng. 81, 15–21 (2005).
[Crossref]

A. P. Milenin, C. Jamois, R. B. Wehrspohn, and M. Reiche, “The SOI planar photonic crystal fabrication: patterning of Cr using Cl2/O2 plasma etching,” Microelectron. Eng. 77, 139–143 (2005).
[Crossref]

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
[Crossref]

Kimerling, L. C.

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Krauss, T. F.

Lalanne, Ph.

A. Talneau, M. Mulot, S. Anand, and Ph. Lalanne, “Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,” Appl. Phys. Lett. 82, 2577–2579 (2003).
[Crossref]

Lambkin, P.

P. Lambkin, C. Percival, and B. Corbett, “Reflectivity Measurements of Intracavity Defects in Laser Diodes,” IEEE J. Quantum Electron. 40, 10–17 (2004).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Li, J.

Lim, D. R.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luan, H.-C.

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luyssaert, B.

Macintyre, D. S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

McNab, S.

Milenin, A. P.

A. P. Milenin, C. Jamois, R. B. Wehrspohn, and M. Reiche, “The SOI planar photonic crystal fabrication: patterning of Cr using Cl2/O2 plasma etching,” Microelectron. Eng. 77, 139–143 (2005).
[Crossref]

A. P. Milenin, C. Jamois, T. Geppert, U. Gösele, and R. B. Wehrspohn, “SOI planar photonic crystal fabrication: Etching through SiO2/Si/SiO2 layer systems using fluorocarbon plasmas,” Microelectron. Eng. 81, 15–21 (2005).
[Crossref]

Mulot, M.

A. Talneau, M. Mulot, S. Anand, and Ph. Lalanne, “Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,” Appl. Phys. Lett. 82, 2577–2579 (2003).
[Crossref]

O’Faolain, L.

Percival, C.

P. Lambkin, C. Percival, and B. Corbett, “Reflectivity Measurements of Intracavity Defects in Laser Diodes,” IEEE J. Quantum Electron. 40, 10–17 (2004).
[Crossref]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Reiche, M.

A. P. Milenin, C. Jamois, R. B. Wehrspohn, and M. Reiche, “The SOI planar photonic crystal fabrication: patterning of Cr using Cl2/O2 plasma etching,” Microelectron. Eng. 77, 139–143 (2005).
[Crossref]

Schares, L.

Shinojima, H.

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Sorel, M.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Sparacin, D. K.

Spector, S. J.

Taillaert, D.

Talneau, A.

A. Talneau, M. Mulot, S. Anand, and Ph. Lalanne, “Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,” Appl. Phys. Lett. 82, 2577–2579 (2003).
[Crossref]

Thoms, S.

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

Thornton, R. L.

D. Hofstetter and R. L. Thornton, “Loss measurements on semiconductor lasers by Fourier analysis of the emission spectra,” Appl. Phys. Lett. 72, 404–406 (1998).
[Crossref]

D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quantum Electron. 34, 1914–1923 (1998).
[Crossref]

Tsuchizawa, T.

Van Campenhout, J.

Van Thourhout, D.

Vlasov, Y.

Vlasov, Y. A.

Watanabe, T.

Wehrspohn, R. B.

A. P. Milenin, C. Jamois, R. B. Wehrspohn, and M. Reiche, “The SOI planar photonic crystal fabrication: patterning of Cr using Cl2/O2 plasma etching,” Microelectron. Eng. 77, 139–143 (2005).
[Crossref]

A. P. Milenin, C. Jamois, T. Geppert, U. Gösele, and R. B. Wehrspohn, “SOI planar photonic crystal fabrication: Etching through SiO2/Si/SiO2 layer systems using fluorocarbon plasmas,” Microelectron. Eng. 81, 15–21 (2005).
[Crossref]

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
[Crossref]

White, T. P.

Wiaux, V.

Xia, F.

Yamada, K.

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[Crossref]

Appl. Phys. Lett. (3)

A. Talneau, M. Mulot, S. Anand, and Ph. Lalanne, “Compound cavity measurement of transmission and reflection of a tapered single-line photonic-crystal waveguide,” Appl. Phys. Lett. 82, 2577–2579 (2003).
[Crossref]

D. Hofstetter and R. L. Thornton, “Loss measurements on semiconductor lasers by Fourier analysis of the emission spectra,” Appl. Phys. Lett. 72, 404–406 (1998).
[Crossref]

K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Electron. Lett. (1)

M. Gnan, S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel, “Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist,” Electron. Lett. 44, 115–116 (2008).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Lambkin, C. Percival, and B. Corbett, “Reflectivity Measurements of Intracavity Defects in Laser Diodes,” IEEE J. Quantum Electron. 40, 10–17 (2004).
[Crossref]

D. Hofstetter and R. L. Thornton, “Measurement of optical cavity properties in semiconductor lasers by Fourier analysis of the emission spectrum,” IEEE J. Quantum Electron. 34, 1914–1923 (1998).
[Crossref]

J. Lightwave Technol. (1)

Microelectron. Eng. (2)

A. P. Milenin, C. Jamois, R. B. Wehrspohn, and M. Reiche, “The SOI planar photonic crystal fabrication: patterning of Cr using Cl2/O2 plasma etching,” Microelectron. Eng. 77, 139–143 (2005).
[Crossref]

A. P. Milenin, C. Jamois, T. Geppert, U. Gösele, and R. B. Wehrspohn, “SOI planar photonic crystal fabrication: Etching through SiO2/Si/SiO2 layer systems using fluorocarbon plasmas,” Microelectron. Eng. 81, 15–21 (2005).
[Crossref]

Opt. Express (5)

Photonics Nanostruct. Fundam. Appl. (1)

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gösele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam. Appl. 1, 1–13 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Overview of the fabrication process of an IOSOI waveguide structure. Details in the main text.

Fig. 2.
Fig. 2.

SEM micrograph of a ridge waveguide etched into the IOSOI material as described in the main text. One can clearly identify the Si layer surrounded by the silicon oxide claddings. On top of the structure the remaining Cr mask is visible.

Fig. 3.
Fig. 3.

Scheme of the used setup for the transmission measurements. For a detailed description see the text. PC: polarization controller, LF: lensed fiber, XYZ: micropositioners, DUT: device under test, -10dB: -10 dB-coupler, PD: detector, E: electronics

Fig. 4.
Fig. 4.

Typical transmission spectra of an 890 nm wide IOSOI ridge waveguide. left: TE-polarization; right: TM-polarization.

Fig. 5.
Fig. 5.

Fourier transformation of the transmission spectrum in Fig. 4. The two arrows mark the fundamental peak (left) and the first harmonic (right) of the Fabry-Perot oscillation.

Fig. 6.
Fig. 6.

Absorption coefficient α of an 890 nm wide IOSOI ridge waveguide for TE-polarization (left) and TM-polarization (right) determined via the Fourier method.

Fig. 7.
Fig. 7.

Absorption coefficient α of a 2 μm wide IOSOI ridge waveguide for TE-polarization (left) and TM-polarization (right) determined via the Fourier method.

Fig. 8.
Fig. 8.

Group index dispersion ng (λ) of an 890 nm wide (top) and a 2 μm wide (bottom) IOSOI ridge waveguide for TE-polarization (left) and TM-polarization (right). Experimental data are drawn in black and theoretical curves are drawn in red.

Fig. 9.
Fig. 9.

Calculated field distributions of the fundamental guided modes of an 890 nm wide IOSOI waveguide. For TE-polarization, the E y -field distribution (top left) and the E x -field distribution (bottom left, multiplied by a factor of 5) are displayed. For TM-polarization, the H y -field distribution (top right) and the H x -field distribution (bottom right, multiplied by a factor of 10) are displayed.

Tables (1)

Tables Icon

Table 1. Overview and comparison of absorption coefficients of silicon based ridge waveguides characterized by different groups.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k , l x y e i ( ω t β k , l z ) e α 2 z
n g = n k , l λ n k , l λ
β k , l = ω c n k , l
{ I T } ( ( i + 1 ) L opt ) { I T } ( i L opt ) = R A
α = 10 log ( e ) ln A d geo

Metrics