Abstract

An emission frequency selective surface, or eFSS, is made up of a periodic arrangement of resonant antenna structures above a ground plane. By exploiting the coupling and symmetry properties of an eFSS, it is possible to introduce polarization sensitive thermal emission and, subsequently, coherent emission. Two surfaces are considered: a linearly polarized emission surface and a circularly polarized emission surface. The linearly polarized surface consisted of an array of dipole elements and measurements demonstrate these surfaces can be fabricated into high polarization contrast patterns. The circularly polarized surface required the use of an asymmetrical tripole element to maintain coherence between orthogonal current modes and introduce the necessary phase delay to realize circularly polarized radiation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee and Z. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
    [CrossRef]
  2. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  3. E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-Variant Polarization Manipulation of a Thermal Emission by a SiO2 Subwavelength Grating Supporting Surface Phonon-Polariton,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), paper CTuL6.
  4. J. S. Tharp, J. M. López-Alonso, J. C. Ginn, C. F. Middleton, B. A. Lail, B. A. Munk, and G. D. Boreman, “Demonstration of a single-layer meanderline phase retarder at infrared,” Opt. Lett. 31(18), 2687–2689 (2006).
    [CrossRef] [PubMed]
  5. L. Klein, H. Hamann, Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
    [CrossRef]
  6. S. Ingvarsson, L. Klein, Y. Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
    [CrossRef] [PubMed]
  7. C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
    [CrossRef] [PubMed]
  8. B. A. Munk, Frequency Selective Surfaces: Theory and Design, (Wiley, 2000).
  9. H. Ruthanne, E. Swaim, N. Hammer, E. Richards, D. Venkataraman, and M. Barnes, “Robust Circular Polarized Emission from Nanoscopic Single-Molecule Sources: Application to Solid State Devices,” in Organic Electronics — Materials, Devices and Applications, F. So, G.B. Blanchet, Y. Ohmori, eds. (Mater. Res. Soc. Symp. Proc. 965E, Warrendale, PA, 2007), pp. 0965–S12–08.
  10. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
    [CrossRef]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [CrossRef]
  12. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
    [CrossRef] [PubMed]
  13. I. Pusçasu, W. Schaich, and G. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol. 43(2), 101–107 (2002).
    [CrossRef]
  14. B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
    [CrossRef]
  15. J. Tharp, D. Shelton, S. Wadsworth, and G. Boreman, “Electron-Beam Lithography of Multiple Layer Sub-micrometer Periodic Arrays on a Barium Fluoride Substrate,” J. Vac. Sci. Technol. B 26, 1821–1823 (2008).
    [CrossRef]
  16. J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).
  17. Z. Wu, W. Zhang, Z. Liu, and W. Shen, “Circularly polarised reflectarray with linearly polarised feed,” Electron. Lett. 41(7), 387–388 (2005).
    [CrossRef]
  18. R. Jedlicka, M. Poe, and K. Carver, “Measured mutual coupling between microstrip antennas,” IEEE Trans. Antenn. Propag. 29(1), 147–149 (1981).
    [CrossRef]
  19. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
    [CrossRef]
  20. J. Vardaxoglou and E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19(18), 709–710 (1983).
    [CrossRef]
  21. D. Pozar, S. Targonski, and H. Syrigos, “Design of Millimeter Wave Microstrip Reflectarrays,” IEEE Trans. Antenn. Propag. 45(2), 287–296 (1997).
    [CrossRef]

2009 (1)

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

2008 (4)

J. Tharp, D. Shelton, S. Wadsworth, and G. Boreman, “Electron-Beam Lithography of Multiple Layer Sub-micrometer Periodic Arrays on a Barium Fluoride Substrate,” J. Vac. Sci. Technol. B 26, 1821–1823 (2008).
[CrossRef]

L. Klein, H. Hamann, Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
[CrossRef] [PubMed]

2007 (4)

B. Lee and Z. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
[CrossRef]

S. Ingvarsson, L. Klein, Y. Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[CrossRef] [PubMed]

C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express 15(22), 14673–14678 (2007).
[CrossRef] [PubMed]

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).

2006 (1)

2005 (3)

V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Z. Wu, W. Zhang, Z. Liu, and W. Shen, “Circularly polarised reflectarray with linearly polarised feed,” Electron. Lett. 41(7), 387–388 (2005).
[CrossRef]

B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

2002 (2)

I. Pusçasu, W. Schaich, and G. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol. 43(2), 101–107 (2002).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

1997 (1)

D. Pozar, S. Targonski, and H. Syrigos, “Design of Millimeter Wave Microstrip Reflectarrays,” IEEE Trans. Antenn. Propag. 45(2), 287–296 (1997).
[CrossRef]

1983 (1)

J. Vardaxoglou and E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19(18), 709–710 (1983).
[CrossRef]

1981 (1)

R. Jedlicka, M. Poe, and K. Carver, “Measured mutual coupling between microstrip antennas,” IEEE Trans. Antenn. Propag. 29(1), 147–149 (1981).
[CrossRef]

Alda, J.

Au, Y.

L. Klein, H. Hamann, Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

Au, Y. Y.

Boreman, G.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
[CrossRef] [PubMed]

J. Tharp, D. Shelton, S. Wadsworth, and G. Boreman, “Electron-Beam Lithography of Multiple Layer Sub-micrometer Periodic Arrays on a Barium Fluoride Substrate,” J. Vac. Sci. Technol. B 26, 1821–1823 (2008).
[CrossRef]

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).

B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

I. Pusçasu, W. Schaich, and G. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol. 43(2), 101–107 (2002).
[CrossRef]

Boreman, G. D.

Bossard, J. A.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Cai, W.

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Carver, K.

R. Jedlicka, M. Poe, and K. Carver, “Measured mutual coupling between microstrip antennas,” IEEE Trans. Antenn. Propag. 29(1), 147–149 (1981).
[CrossRef]

Chang, Y. C.

Chang, Y. T.

Chen, C. Y.

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Chettiar, U. K.

Drachev, V. P.

Folks, W.

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).

Ginn, J.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
[CrossRef] [PubMed]

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).

Ginn, J. C.

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Hamann, H.

L. Klein, H. Hamann, Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

Hamann, H. F.

Ingvarsson, S.

L. Klein, H. Hamann, Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

S. Ingvarsson, L. Klein, Y. Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[CrossRef] [PubMed]

Jedlicka, R.

R. Jedlicka, M. Poe, and K. Carver, “Measured mutual coupling between microstrip antennas,” IEEE Trans. Antenn. Propag. 29(1), 147–149 (1981).
[CrossRef]

Jiang, Y. W.

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Kildishev, A. V.

Klein, L.

L. Klein, H. Hamann, Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

S. Ingvarsson, L. Klein, Y. Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced thermal emission from individual antenna-like nanoheaters,” Opt. Express 15(18), 11249–11254 (2007).
[CrossRef] [PubMed]

Kotter, D.

B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Krenz, P.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

Lacey, J. A.

Lail, B.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett. 33(8), 779–781 (2008).
[CrossRef] [PubMed]

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).

Lail, B. A.

Lee, B.

B. Lee and Z. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
[CrossRef]

Lee, S. C.

Liu, Z.

Z. Wu, W. Zhang, Z. Liu, and W. Shen, “Circularly polarised reflectarray with linearly polarised feed,” Electron. Lett. 41(7), 387–388 (2005).
[CrossRef]

López-Alonso, J. M.

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Mayer, T. S.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Middleton, C. F.

Monacelli, B.

B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Munk, B.

B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Munk, B. A.

Parker, E.

J. Vardaxoglou and E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19(18), 709–710 (1983).
[CrossRef]

Poe, M.

R. Jedlicka, M. Poe, and K. Carver, “Measured mutual coupling between microstrip antennas,” IEEE Trans. Antenn. Propag. 29(1), 147–149 (1981).
[CrossRef]

Pozar, D.

D. Pozar, S. Targonski, and H. Syrigos, “Design of Millimeter Wave Microstrip Reflectarrays,” IEEE Trans. Antenn. Propag. 45(2), 287–296 (1997).
[CrossRef]

Pryor, J.

B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Pusçasu, I.

I. Pusçasu, W. Schaich, and G. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol. 43(2), 101–107 (2002).
[CrossRef]

Sarychev, A. K.

Schaich, W.

I. Pusçasu, W. Schaich, and G. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol. 43(2), 101–107 (2002).
[CrossRef]

Shalaev, V. M.

Shelton, D.

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Tharp, D. Shelton, S. Wadsworth, and G. Boreman, “Electron-Beam Lithography of Multiple Layer Sub-micrometer Periodic Arrays on a Barium Fluoride Substrate,” J. Vac. Sci. Technol. B 26, 1821–1823 (2008).
[CrossRef]

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).

Shen, W.

Z. Wu, W. Zhang, Z. Liu, and W. Shen, “Circularly polarised reflectarray with linearly polarised feed,” Electron. Lett. 41(7), 387–388 (2005).
[CrossRef]

Syrigos, H.

D. Pozar, S. Targonski, and H. Syrigos, “Design of Millimeter Wave Microstrip Reflectarrays,” IEEE Trans. Antenn. Propag. 45(2), 287–296 (1997).
[CrossRef]

Tang, Y.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Targonski, S.

D. Pozar, S. Targonski, and H. Syrigos, “Design of Millimeter Wave Microstrip Reflectarrays,” IEEE Trans. Antenn. Propag. 45(2), 287–296 (1997).
[CrossRef]

Tharp, J.

J. Tharp, D. Shelton, S. Wadsworth, and G. Boreman, “Electron-Beam Lithography of Multiple Layer Sub-micrometer Periodic Arrays on a Barium Fluoride Substrate,” J. Vac. Sci. Technol. B 26, 1821–1823 (2008).
[CrossRef]

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).

Tharp, J. S.

Tsai, D. P.

Tsai, M. W.

Vardaxoglou, J.

J. Vardaxoglou and E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19(18), 709–710 (1983).
[CrossRef]

Wadsworth, S.

J. Tharp, D. Shelton, S. Wadsworth, and G. Boreman, “Electron-Beam Lithography of Multiple Layer Sub-micrometer Periodic Arrays on a Barium Fluoride Substrate,” J. Vac. Sci. Technol. B 26, 1821–1823 (2008).
[CrossRef]

Wang, C. M.

Werner, D. H.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Wu, Z.

Z. Wu, W. Zhang, Z. Liu, and W. Shen, “Circularly polarised reflectarray with linearly polarised feed,” Electron. Lett. 41(7), 387–388 (2005).
[CrossRef]

Ye, Y. H.

Yuan, H.-K.

Zhang, W.

Z. Wu, W. Zhang, Z. Liu, and W. Shen, “Circularly polarised reflectarray with linearly polarised feed,” Electron. Lett. 41(7), 387–388 (2005).
[CrossRef]

Zhang, Z.

B. Lee and Z. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
[CrossRef]

Appl. Comput. Electromagn. Soc. J. (1)

J. Ginn, B. Lail, D. Shelton, J. Tharp, W. Folks, and G. Boreman, “Characterizing Infrared Frequency Selective Surfaces on Dispersive Media,” Appl. Comput. Electromagn. Soc. J. 22, 184–188 (2007).

Appl. Phys. Lett. (2)

L. Klein, H. Hamann, Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008).
[CrossRef]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett. 92(26), 263106 (2008).
[CrossRef]

Electron. Lett. (2)

J. Vardaxoglou and E. Parker, “Performance of two tripole arrays as frequency selective surfaces,” Electron. Lett. 19(18), 709–710 (1983).
[CrossRef]

Z. Wu, W. Zhang, Z. Liu, and W. Shen, “Circularly polarised reflectarray with linearly polarised feed,” Electron. Lett. 41(7), 387–388 (2005).
[CrossRef]

IEEE Trans. Antenn. Propag. (3)

R. Jedlicka, M. Poe, and K. Carver, “Measured mutual coupling between microstrip antennas,” IEEE Trans. Antenn. Propag. 29(1), 147–149 (1981).
[CrossRef]

D. Pozar, S. Targonski, and H. Syrigos, “Design of Millimeter Wave Microstrip Reflectarrays,” IEEE Trans. Antenn. Propag. 45(2), 287–296 (1997).
[CrossRef]

B. Monacelli, J. Pryor, B. Munk, D. Kotter, and G. Boreman, “Infrared frequency selective surface based on circuit-analog square loop design,” IEEE Trans. Antenn. Propag. 53(2), 745–752 (2005).
[CrossRef]

Infrared Phys. Technol. (1)

I. Pusçasu, W. Schaich, and G. Boreman, “Resonant enhancement of emission and absorption using frequency selective surfaces in the infrared,” Infrared Phys. Technol. 43(2), 101–107 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Altering infrared metamaterial performance through metal resonance damping,” J. Appl. Phys. 105(7), 074304 (2009).
[CrossRef]

J. Heat Transfer (1)

B. Lee and Z. Zhang, “Coherent Thermal Emission From Modified Periodic Multilayer Structures,” J. Heat Transfer 129(1), 17–26 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. Tharp, D. Shelton, S. Wadsworth, and G. Boreman, “Electron-Beam Lithography of Multiple Layer Sub-micrometer Periodic Arrays on a Barium Fluoride Substrate,” J. Vac. Sci. Technol. B 26, 1821–1823 (2008).
[CrossRef]

Nature (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Other (3)

E. Hasman, N. Dahan, A. Niv, G. Biener, and V. Kleiner, “Space-Variant Polarization Manipulation of a Thermal Emission by a SiO2 Subwavelength Grating Supporting Surface Phonon-Polariton,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), paper CTuL6.

B. A. Munk, Frequency Selective Surfaces: Theory and Design, (Wiley, 2000).

H. Ruthanne, E. Swaim, N. Hammer, E. Richards, D. Venkataraman, and M. Barnes, “Robust Circular Polarized Emission from Nanoscopic Single-Molecule Sources: Application to Solid State Devices,” in Organic Electronics — Materials, Devices and Applications, F. So, G.B. Blanchet, Y. Ohmori, eds. (Mater. Res. Soc. Symp. Proc. 965E, Warrendale, PA, 2007), pp. 0965–S12–08.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a unit cell of the dipole array and a scanning electron micrograph of the fabricated array with array dimensions labeled. The width of the dipoles is 0.5 µm.

Fig. 2
Fig. 2

Modeled emission spectrum of the microstrip dipole. The dark line is the polarization state along the length of the dipole and the dotted line is the polarization state along the width of the dipole.

Fig. 3
Fig. 3

Linearly polarized Pegasus (black regions correspond to vertically orientated dipoles and gray regions correspond to horizontally orientated dipoles). Thermal images of the linearly polarized Pegasus with the camera’s linear polarized (a) horizontally oriented and (b) vertically oriented.

Fig. 4
Fig. 4

Compact, multi-layer circular polarizer for emitted radiation.

Fig. 5
Fig. 5

Scanning electron micrograph of the fabricated asymmetric tripole array with dimensions labeled. The width of the arms are 0.5 μm.

Fig. 6
Fig. 6

Modeled emission and phase properties of the asymmetric tripole. A dotted line marks the ideal 90-degree phase difference required for circular polarized emission.

Fig. 7
Fig. 7

Two thermal images (side by side) of checkerboard asymmetric tripole with circular polarizer in front of the camera and in two orthogonal directions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ ( λ ) + τ ( λ ) + α ( λ ) = 1
α ( λ ) = ε ( λ )
ε ( λ ) = 1 ρ ( λ )

Metrics