Abstract

We report the fabrication and characterization of the first guiding chalcogenide As2S3 microstructured optical fibers (MOFs) with a suspended core. At 1.55 µm, the measured losses are approximately 0.7 dB/m or 0.35 dB/m according to the MOF core size. The fibers have been designed to present a zero dispersion wavelength (ZDW) around 2 µm. By pumping the fibers at 1.55 µm, strong spectral broadenings are obtained in both 1.8 and 45-m-long fibers by using a picosecond fiber laser.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A New Optical Fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).
  2. G. P. Agrawal, Application of nonlinear fiber optics”, Academic Press, Boston 2001.
  3. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  5. R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
    [CrossRef]
  6. F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
    [CrossRef]
  7. F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
    [CrossRef]
  8. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
    [CrossRef]
  9. F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 658803 (2007).
    [CrossRef]
  10. J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
    [CrossRef]
  11. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
    [CrossRef] [PubMed]
  12. G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J. C. Jules, F. Smektala, and L. Tong, “Demonstration of a Reef Knot Microfiber Resonator,” Opt. Express 17(8), 6224–6229 (2009).
    [CrossRef] [PubMed]
  13. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  14. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
    [CrossRef] [PubMed]
  15. D. P. Wei, T. V. Galstian, I. V. Smolnikov, V. G. Plotnichenko, and A. Zohrabyan, “Spectral Broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13(7), 2439–2443 (2005).
    [CrossRef] [PubMed]
  16. L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
    [CrossRef]
  17. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
    [CrossRef]
  18. M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
    [CrossRef]
  19. C. Chaidhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol. 27(12), 2095–2099 (2009).
    [CrossRef]
  20. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003).
    [CrossRef] [PubMed]
  21. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  22. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
    [CrossRef] [PubMed]
  23. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 µm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
    [CrossRef] [PubMed]
  24. C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Désévédavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
    [CrossRef] [PubMed]
  25. F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
    [CrossRef] [PubMed]
  26. F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
    [CrossRef] [PubMed]
  27. G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
    [CrossRef]
  28. G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).
  29. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, “Foundations of Photonic Crystal Fibres”, Imperial College Press, London, ISBN: 1–86094–507–4, (2005).
  30. M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, “Comparison of different methods for rigorous modeling of photonic crystal fibers,” Opt. Express 14(12), 5699–5714 (2006).
    [CrossRef] [PubMed]
  31. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  32. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30(11), 1264–1266 (2005).
    [CrossRef] [PubMed]
  33. G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
    [CrossRef]
  34. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996) (REMOVED HYPERLINK FIELD) (REMOVED HYPERLINK FIELD).
    [CrossRef] [PubMed]
  35. M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).
  36. J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Désévédavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
    [CrossRef]
  37. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
    [CrossRef]
  38. R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006).
    [CrossRef] [PubMed]
  39. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
    [CrossRef] [PubMed]
  40. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
    [CrossRef] [PubMed]
  41. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
    [CrossRef]
  42. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]

2009

G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J. C. Jules, F. Smektala, and L. Tong, “Demonstration of a Reef Knot Microfiber Resonator,” Opt. Express 17(8), 6224–6229 (2009).
[CrossRef] [PubMed]

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
[CrossRef]

C. Chaidhari, T. Suzuki, and Y. Ohishi, “Design of zero chromatic dispersion chalcogenide As2S3 glass nanofibers,” J. Lightwave Technol. 27(12), 2095–2099 (2009).
[CrossRef]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Supercontinuum generation spanning over three octaves from UV to 3.85 µm in a fluoride fiber,” Opt. Lett. 34(13), 2015–2017 (2009).
[CrossRef] [PubMed]

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Désévédavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[CrossRef] [PubMed]

2008

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Désévédavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
[CrossRef]

2007

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 658803 (2007).
[CrossRef]

2006

2005

2004

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
[CrossRef]

G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

2003

2001

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

2000

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

1998

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

1996

1994

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

1973

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A New Optical Fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Adam, J. L.

Aggarwal, I. D.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Antoine, K.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Asimakis, S.

Atkin, D. M.

Barthélémy, A.

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Barton, G.

G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

Bashkansky, M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Birks, T. A.

Bordas, F.

Boudebs, G.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
[CrossRef]

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

Brilland, L.

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Désévédavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Désévédavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 658803 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Bureau, B.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
[CrossRef]

Carlie, N.

Chaidhari, C.

Chartier, T.

Chaudhari, C.

Choi, D. Y.

Churbanov, M. F.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Coillet, A.

Cordeiro, C. M. B.

Couderc, V.

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

Coulombier, Q.

Couzi, M.

Cronin-Golomb, M.

De Angelis, C.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Delfyett, P.

Désévédavy, F.

Dianov, E. M.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).

Domachuk, P.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Dutton, Z.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Eijkelenborg, M. A. V.

G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

El Amraoui, M.

Ewen, P. J. S.

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

Fatome, J.

Février, S.

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
[CrossRef]

Finazzi, V.

Finot, C.

Florea, C. M.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Fortier, C.

Frampton, K.

Fu, L.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Fu, L. B.

Fuerbach, A.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Gadret, G.

Galstian, T. V.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

George, A. K.

Gerasimenko, V. V.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).

Grelu, P.

Hajto, E.

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

Henry, G.

G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

Hewak, D. W.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Hochman, A.

Houizot, P.

Jain, H.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Jules, J. C.

Kaiser, P.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A New Optical Fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Kar, A. K.

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

Kibler, B.

Kito, C.

Knight, J. C.

Koizumi, F.

Kosa, T.

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

Kotynski, R.

Kuhlmey, B.

Kuhlmey, B. T.

Lamont, M. R. E.

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Large, C. J.

G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

LeNeindre, L.

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Leviatan, Y.

Li, W.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Liao, M.

Littler, I. C. M.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Lopez, C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Lucas, J.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Luther-Davies, B.

Madden, S.

Mägi, E. C.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Marcatili, E. A. J.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A New Optical Fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Matsumoto, M.

McPhedran, R.

Messaad, K.

Miller, A. C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Miller, S. E.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A New Optical Fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Millot, G.

Misumi, T.

Monro, T.

Monro, T. M.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Monteil, A.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
[CrossRef]

Monteville, A.

Moore, R.

Moss, D. J.

Myneni, S.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Nguyen, H. C.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Nguyen, T.

Nguyen, T. N.

Nguyen, V. Q.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Ohishi, Y.

Omenetto, F. G.

Owen, A. E.

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

Panajotov, K.

Pelusi, M. D.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Petit, L.

Petropoulos, P.

Pitois, S.

Plotnichenko, V. G.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).

D. P. Wei, T. V. Galstian, I. V. Smolnikov, V. G. Plotnichenko, and A. Zohrabyan, “Spectral Broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13(7), 2439–2443 (2005).
[CrossRef] [PubMed]

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

Pope, A.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Provost, L.

Pureza, P.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Pushkin, A. A.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).

Qin, G.

Quémard, C.

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Rangelrojo, R.

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

Renversez, G.

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Désévédavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30(11), 1264–1266 (2005).
[CrossRef] [PubMed]

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28(12), 989–991 (2003).
[CrossRef] [PubMed]

Richardson, D.

Richardson, D. J.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Richardson, K.

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006).
[CrossRef] [PubMed]

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Rivero, C.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Rochette, M.

Russell, P. S. J.

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Sanchez, F.

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

Sanghera, J. S.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Schulte, A.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Scripatchev, I. V.

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

Seal, S.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

Serebryannikov, E.

Shaw, L. B.

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

Shiryaev, V. S.

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

Smektala, F.

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Désévédavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J. C. Jules, F. Smektala, and L. Tong, “Demonstration of a Reef Knot Microfiber Resonator,” Opt. Express 17(8), 6224–6229 (2009).
[CrossRef] [PubMed]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Désévédavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 658803 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
[CrossRef]

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

Smolnikov, I. V.

Snopatin, G. E.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

Stegeman, G.

Stegeman, R.

Suzuki, T.

Szpulak, M.

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
[CrossRef]

M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, “Comparison of different methods for rigorous modeling of photonic crystal fibers,” Opt. Express 14(12), 5699–5714 (2006).
[CrossRef] [PubMed]

Ta’eed, V. G.

Ta'eed, V. G.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Tong, L.

Traynor, N.

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Désévédavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Désévédavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 658803 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

Troles, J.

F. Désévédavy, G. Renversez, J. Troles, L. Brilland, P. Houizot, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Te-As-Se glass microstructured optical fiber for the middle infrared,” Appl. Opt. 48(19), 3860–3865 (2009).
[CrossRef] [PubMed]

J. Fatome, C. Fortier, T. N. Nguyen, T. Chartier, F. Smektala, K. Messaad, B. Kibler, S. Pitois, G. Gadret, C. Finot, J. Troles, F. Désévédavy, P. Houizot, G. Renversez, L. Brilland, and N. Traynor, “Linear and Nonlinear Characterizations of Chalcogenide Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1707–1715 (2009).
[CrossRef]

F. Désévédavy, G. Renversez, L. Brilland, P. Houizot, J. Troles, Q. Coulombier, F. Smektala, N. Traynor, and J. L. Adam, “Small-core chalcogenide microstructured fibers for the infrared,” Appl. Opt. 47(32), 6014–6021 (2008).
[CrossRef] [PubMed]

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Désévédavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 658803 (2007).
[CrossRef]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
[CrossRef]

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

Urbanczyk, W.

Vienne, G.

Wabnitz, S.

Wang, A.

Weherrett, B. S.

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

Wei, D. P.

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Wolchover, N. A.

Yan, X.

Yeom, D. I.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Zagari, J.

G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

Zheltikov, A.

Zohrabyan, A.

Appl. Opt.

Bell Syst. Tech. J.

P. Kaiser, E. A. J. Marcatili, and S. E. Miller, “A New Optical Fiber,” Bell Syst. Tech. J. 52, 265–269 (1973).

Electron. Lett.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21(13), 884–886 (2009).
[CrossRef]

J. Appl. Phys.

W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, “Role of S/Se ratio in chemical bonding of As–S–Se glasses investigated by Raman, X-ray photoelectron, and extended X-ray absorption fine structure spectroscopies,” J. Appl. Phys. 98(5), 053503 (2005).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

F. Smektala, C. Quémard, L. LeNeindre, J. Lucas, A. Barthélémy, and C. De Angelis, “Chalcogenide glasses with large non-linear refractive indices,” J. Non-Cryst. Solids 239(1-3), 139–142 (1998).
[CrossRef]

F. Smektala, C. Quémard, V. Couderc, and A. Barthélémy, “Non linear optical properties of chalcogenide glasses measured by z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000).
[CrossRef]

J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, “Non linear properties of chalcogenide glasses and fibers,” J. Non-Cryst. Solids 354(2-9), 462–467 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Optoelectron. Adv. Mater.

M. F. Churbanov, I. V. Scripatchev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

Nature

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun.

R. Rangelrojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Weherrett, “Near-infrared optical non linearities in amorphous chalcogenides,” Opt. Commun. 109(1-2), 145–150 (1994).
[CrossRef]

G. Boudebs, F. Sanchez, J. Troles, and F. Smektala, “Non linear optical properties of chalcogenide glasses: comparison between Mach-Zehnder interferometry and Z-scan techniques,” Opt. Commun. 199(5-6), 425–433 (2001).
[CrossRef]

Opt. Express

C. Fortier, J. Fatome, S. Pitois, F. Smektala, G. Millot, J. Troles, F. Désévédavy, P. Houizot, L. Brilland, and N. Traynor, “Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber,” Opt. Express 16(13), 9398–9404 (2008).
[CrossRef] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009).
[CrossRef] [PubMed]

R. Stegeman, G. Stegeman, P. Delfyett, L. Petit, N. Carlie, K. Richardson, and M. Couzi, “Raman gain measurements and photo-induced transmission effects of germanium- and arsenic-based chalcogenide glasses,” Opt. Express 14(24), 11702–11708 (2006).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity,” Opt. Express 17(24), 21608–21614 (2009).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, “Comparison of different methods for rigorous modeling of photonic crystal fibers,” Opt. Express 14(12), 5699–5714 (2006).
[CrossRef] [PubMed]

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of Holey Fibers in chalcogenide glass,” Opt. Express 14(3), 1280–1285 (2006).
[CrossRef] [PubMed]

G. Vienne, A. Coillet, P. Grelu, M. El Amraoui, J. C. Jules, F. Smektala, and L. Tong, “Demonstration of a Reef Knot Microfiber Resonator,” Opt. Express 17(8), 6224–6229 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[CrossRef] [PubMed]

D. P. Wei, T. V. Galstian, I. V. Smolnikov, V. G. Plotnichenko, and A. Zohrabyan, “Spectral Broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13(7), 2439–2443 (2005).
[CrossRef] [PubMed]

Opt. Fiber Technol.

G. Barton, M. A. V. Eijkelenborg, G. Henry, C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10(4), 325–335 (2004).
[CrossRef]

Opt. Lett.

Opt. Mater.

J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064 µm,” Opt. Mater. 25(2), 231–237 (2004).
[CrossRef]

Opt. Quantum Electron.

L. Fu, V. G. Ta'eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly non linear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39(12–13), 1115–1131 (2007).
[CrossRef]

Optoelectron. Adv. Mater.-Rapid Commun.

G. E. Snopatin, M. F. Churbanov, A. A. Pushkin, V. V. Gerasimenko, E. M. Dianov, and V. G. Plotnichenko, “High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km,” Optoelectron. Adv. Mater.-Rapid Commun. 3(7), 669–671 (2009).

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Science

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

SPIE

F. Smektala, F. Désévédavy, L. Brilland, P. Houizot, J. Troles, and N. Traynor, “Advances in the elaboration of chalcogenide photonic crystal fibers for the mid infrared,” SPIE 6588, 658803 (2007).
[CrossRef]

Other

G. P. Agrawal, Application of nonlinear fiber optics”, Academic Press, Boston 2001.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, “Foundations of Photonic Crystal Fibres”, Imperial College Press, London, ISBN: 1–86094–507–4, (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

: Computed waveguide chromatic dispersion Dw (thin upper curves), chromatic dispersion D (thick lower curves) for several suspended core As2S3 MOF. Material chromatic dispersion Dmat (black line). The configurations with a core size of 2.3 and 2.6 µm correspond to the two MOFs studied in section 4. The Sellmeier coefficients are the ones given for As2S3 by J. S. Browder & al. in Handbook of Infrared Optical Materials, P. Klocek editor, Marcel Dekker, ISBN: 0-8247-8468-5, (1991).

Fig. 2
Fig. 2

: Typical attenuation curve of a single index As2S3 optical fiber.

Fig. 3
Fig. 3

SEM pictures of two As2S3 suspended core fibers with a core size of 2.6µm (a) and 2.3µm (b).

Fig. 4
Fig. 4

: Comparison between the experimental chromatic dispersion curves of 2.3-µm (circles) and 2.6-µm (triangles) As2S3 suspended core fibers and their corresponding numerical results (blue and red solid lines, respectively).

Fig. 5
Fig. 5

: Output spectra (blue solid line) recorded from the 1.8-m long 2.6-µm core diameter suspended core fiber for input peak powers of (a) 18 W (b) 28 W and (c) 54 W. Corresponding numerical simulations are also reported with black lines and crosses.

Fig. 6
Fig. 6

: Spectrum recorded experimentally at the output of the 45-m long segment of our 2.3-µm suspended core fiber for an input peak power of 54 W.

Metrics