Abstract

A tripod atomic system driven by two standing-wave fields (a coupling and a driving) is explored to generate tunable double photonic bandgaps in the regime of electromagnetically induced transparency. Both photonic bandgaps depend critically on frequency detunings, spatial periodicities, and initial phases of the two standing-wave fields. When the coupling and driving detunings are very close, a small fluctuation of one standing-wave field may demolish both photonic bandgaps. If the two detunings are greatly different, however, each standing-wave field determines only one photonic bandgap in a less sensitive way. Dynamic generation and elimination of a pair of photonic bandgaps shown here may be exploited toward the end of simultaneous manipulation of two weak light signals even at the single-photon level.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50 (7), 36 (1997).
    [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005).
    [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999).
    [CrossRef]
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
    [CrossRef]
  5. S.-M. Ma, H. Xu, and B. S. Ham, "Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime," Opt. Express 17, 14902 (2009).
    [CrossRef] [PubMed]
  6. M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094 (2000).
    [CrossRef] [PubMed]
  7. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulsed," Nature (London) 409, 490 (2001).
    [CrossRef] [PubMed]
  8. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage time greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
    [CrossRef] [PubMed]
  9. H.-H. Wang, X.-G. Wei, L. Wang, Y.-J. Li, D.-M. Du, J.-H. Wu, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, "Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal," Opt. Express 15, 16044 (2007).
    [CrossRef] [PubMed]
  10. R. Corbalan, A. N. Pisarchik, V. N. Chizhevsky, and R. Vilaseca, "Experimental study of bi-directional pumping of a far-infrared laser," Opt. Commun. 133, 225 (1997).
    [CrossRef]
  11. H. Y. Ling, Y. Q. Li, and M. Xiao, "Electromagnetically induced grating: Homogeneously broadened medium," Phys. Rev. A 57, 1338 (1998).
    [CrossRef]
  12. A. Andre and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002).
    [CrossRef] [PubMed]
  13. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature (London) 426, 638 (2003).
    [CrossRef] [PubMed]
  14. X.-M. Su and B. S. Ham, "Dynamic control of the photonic band gap using quantum coherence," Phys. Rev. A 71, 013821 (2005).
    [CrossRef]
  15. H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93, 073601 (2004).
    [CrossRef] [PubMed]
  16. M. Artoni and G. C. La Rocca, "Optically tunable photonic stop bands in homogeneous absorbing media," Phys. Rev. Lett. 96, 073905 (2006).
    [CrossRef] [PubMed]
  17. D. Petrosyan, "Tunable photonic band gaps with coherently driven atoms in optical lattices," Phys. Rev. A 76, 053823 (2007).
    [CrossRef]
  18. J.-H. Wu, M. Artoni, and G. C. La Rocca, "Controlling the photonic band structure of optically driven cold atoms," J. Opt. Soc. Am. B 25, 1840 (2008).
    [CrossRef]
  19. Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
    [CrossRef]
  20. J.-H. Wu, G. C. La Rocca, and M. Artoni, "Controlled light-pulse propagation in driven color centers in diamond," Phys. Rev. B 77, 113106 (2008).
    [CrossRef]
  21. I. Friedler, G. Kurizki, and D. Petrosyan, "Deterministic quantum logic with photons via optically induced photonic bandgaps," Phys. Rev. A 71, 023803 (2005).
    [CrossRef]
  22. A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94, 063902 (2005).
    [CrossRef] [PubMed]
  23. J.-H. Wu, M. Artoni, and G. C. La Rocca, "All-optical light confinement in dynamic cavities in cold atoms," Phys. Rev. Lett. 103, 133601 (2009).
    [CrossRef] [PubMed]
  24. A.W. Brown and M. Xiao, "All-optical switching and routing based on an electromagnetically induced absorption grating," Opt. Lett. 30, 699 (2005).
    [CrossRef] [PubMed]
  25. J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010).
    [CrossRef]
  26. D. Petrosyan and Y. P. Malakyan, "Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration," Phys. Rev. A 70, 023822 (2004).
    [CrossRef]
  27. S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
    [CrossRef]
  28. A. MacRae, G. Campbell, and A. I. Lvovsky, "Matched slow pulses using double electromagnetically induced transparency," Opt. Lett. 33, 2659 (2008).
    [CrossRef] [PubMed]
  29. L. Karpa, F. Vewinger, and M. Weitz, "Resonance beating of light stored using atomic spinor polaritons," Phys. Rev. Lett. 101, 170406 (2008).
    [CrossRef] [PubMed]
  30. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1980), 6th ed.
  31. E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).
    [CrossRef]

2010 (1)

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010).
[CrossRef]

2009 (2)

2008 (4)

J.-H. Wu, M. Artoni, and G. C. La Rocca, "Controlling the photonic band structure of optically driven cold atoms," J. Opt. Soc. Am. B 25, 1840 (2008).
[CrossRef]

A. MacRae, G. Campbell, and A. I. Lvovsky, "Matched slow pulses using double electromagnetically induced transparency," Opt. Lett. 33, 2659 (2008).
[CrossRef] [PubMed]

L. Karpa, F. Vewinger, and M. Weitz, "Resonance beating of light stored using atomic spinor polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

J.-H. Wu, G. C. La Rocca, and M. Artoni, "Controlled light-pulse propagation in driven color centers in diamond," Phys. Rev. B 77, 113106 (2008).
[CrossRef]

2007 (2)

2006 (2)

M. Artoni and G. C. La Rocca, "Optically tunable photonic stop bands in homogeneous absorbing media," Phys. Rev. Lett. 96, 073905 (2006).
[CrossRef] [PubMed]

Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
[CrossRef]

2005 (6)

I. Friedler, G. Kurizki, and D. Petrosyan, "Deterministic quantum logic with photons via optically induced photonic bandgaps," Phys. Rev. A 71, 023803 (2005).
[CrossRef]

A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

X.-M. Su and B. S. Ham, "Dynamic control of the photonic band gap using quantum coherence," Phys. Rev. A 71, 013821 (2005).
[CrossRef]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage time greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

A.W. Brown and M. Xiao, "All-optical switching and routing based on an electromagnetically induced absorption grating," Opt. Lett. 30, 699 (2005).
[CrossRef] [PubMed]

2004 (3)

D. Petrosyan and Y. P. Malakyan, "Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration," Phys. Rev. A 70, 023822 (2004).
[CrossRef]

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature (London) 426, 638 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Andre and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).
[CrossRef]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulsed," Nature (London) 409, 490 (2001).
[CrossRef] [PubMed]

2000 (1)

M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094 (2000).
[CrossRef] [PubMed]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

1998 (1)

H. Y. Ling, Y. Q. Li, and M. Xiao, "Electromagnetically induced grating: Homogeneously broadened medium," Phys. Rev. A 57, 1338 (1998).
[CrossRef]

1997 (2)

R. Corbalan, A. N. Pisarchik, V. N. Chizhevsky, and R. Vilaseca, "Experimental study of bi-directional pumping of a far-infrared laser," Opt. Commun. 133, 225 (1997).
[CrossRef]

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50 (7), 36 (1997).
[CrossRef]

Andre, A.

A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

A. Andre and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

Artoni, M.

J.-H. Wu, M. Artoni, and G. C. La Rocca, "All-optical light confinement in dynamic cavities in cold atoms," Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

J.-H. Wu, M. Artoni, and G. C. La Rocca, "Controlling the photonic band structure of optically driven cold atoms," J. Opt. Soc. Am. B 25, 1840 (2008).
[CrossRef]

J.-H. Wu, G. C. La Rocca, and M. Artoni, "Controlled light-pulse propagation in driven color centers in diamond," Phys. Rev. B 77, 113106 (2008).
[CrossRef]

M. Artoni and G. C. La Rocca, "Optically tunable photonic stop bands in homogeneous absorbing media," Phys. Rev. Lett. 96, 073905 (2006).
[CrossRef] [PubMed]

Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
[CrossRef]

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Ba, N.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010).
[CrossRef]

Bajcsy, M.

A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature (London) 426, 638 (2003).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulsed," Nature (London) 409, 490 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999).
[CrossRef]

Brown, A.W.

Campbell, G.

Cataliotti, F.

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Chizhevsky, V. N.

R. Corbalan, A. N. Pisarchik, V. N. Chizhevsky, and R. Vilaseca, "Experimental study of bi-directional pumping of a far-infrared laser," Opt. Commun. 133, 225 (1997).
[CrossRef]

Corbalan, R.

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

R. Corbalan, A. N. Pisarchik, V. N. Chizhevsky, and R. Vilaseca, "Experimental study of bi-directional pumping of a far-infrared laser," Opt. Commun. 133, 225 (1997).
[CrossRef]

Cui, C.-L.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010).
[CrossRef]

Du, D.-M.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulsed," Nature (London) 409, 490 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094 (2000).
[CrossRef] [PubMed]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage time greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Friedler, I.

I. Friedler, G. Kurizki, and D. Petrosyan, "Deterministic quantum logic with photons via optically induced photonic bandgaps," Phys. Rev. A 71, 023803 (2005).
[CrossRef]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

Gao, J.-W.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010).
[CrossRef]

Gao, J.-Y.

H.-H. Wang, X.-G. Wei, L. Wang, Y.-J. Li, D.-M. Du, J.-H. Wu, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, "Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal," Opt. Express 15, 16044 (2007).
[CrossRef] [PubMed]

Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
[CrossRef]

Ham, B. S.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999).
[CrossRef]

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50 (7), 36 (1997).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulsed," Nature (London) 409, 490 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999).
[CrossRef]

He, Q.-Y.

Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
[CrossRef]

Hernandez, G.

H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Jiang, Y.

Kang, H.

H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

Kang, Z.-H.

Karpa, L.

L. Karpa, F. Vewinger, and M. Weitz, "Resonance beating of light stored using atomic spinor polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

Knight, P. L.

E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).
[CrossRef]

Kurizki, G.

I. Friedler, G. Kurizki, and D. Petrosyan, "Deterministic quantum logic with photons via optically induced photonic bandgaps," Phys. Rev. A 71, 023803 (2005).
[CrossRef]

La Rocca, G. C.

J.-H. Wu, M. Artoni, and G. C. La Rocca, "All-optical light confinement in dynamic cavities in cold atoms," Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

J.-H. Wu, G. C. La Rocca, and M. Artoni, "Controlled light-pulse propagation in driven color centers in diamond," Phys. Rev. B 77, 113106 (2008).
[CrossRef]

J.-H. Wu, M. Artoni, and G. C. La Rocca, "Controlling the photonic band structure of optically driven cold atoms," J. Opt. Soc. Am. B 25, 1840 (2008).
[CrossRef]

M. Artoni and G. C. La Rocca, "Optically tunable photonic stop bands in homogeneous absorbing media," Phys. Rev. Lett. 96, 073905 (2006).
[CrossRef] [PubMed]

Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
[CrossRef]

Li, Y. Q.

H. Y. Ling, Y. Q. Li, and M. Xiao, "Electromagnetically induced grating: Homogeneously broadened medium," Phys. Rev. A 57, 1338 (1998).
[CrossRef]

Li, Y.-J.

Ling, H. Y.

H. Y. Ling, Y. Q. Li, and M. Xiao, "Electromagnetically induced grating: Homogeneously broadened medium," Phys. Rev. A 57, 1338 (1998).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulsed," Nature (London) 409, 490 (2001).
[CrossRef] [PubMed]

Longdell, J. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage time greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Lukin, M. D.

A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature (London) 426, 638 (2003).
[CrossRef] [PubMed]

A. Andre and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094 (2000).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

Lvovsky, A. I.

Ma, S.-M.

MacRae, A.

Malakyan, Y. P.

D. Petrosyan and Y. P. Malakyan, "Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration," Phys. Rev. A 70, 023822 (2004).
[CrossRef]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage time greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Ottaviani, C.

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Paspalakis, E.

E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).
[CrossRef]

Petrosyan, D.

D. Petrosyan, "Tunable photonic band gaps with coherently driven atoms in optical lattices," Phys. Rev. A 76, 053823 (2007).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, "Deterministic quantum logic with photons via optically induced photonic bandgaps," Phys. Rev. A 71, 023803 (2005).
[CrossRef]

D. Petrosyan and Y. P. Malakyan, "Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration," Phys. Rev. A 70, 023822 (2004).
[CrossRef]

Pisarchik, A. N.

R. Corbalan, A. N. Pisarchik, V. N. Chizhevsky, and R. Vilaseca, "Experimental study of bi-directional pumping of a far-infrared laser," Opt. Commun. 133, 225 (1997).
[CrossRef]

Rebic, S.

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

Sellars, M. J.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage time greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

Su, X.-M.

X.-M. Su and B. S. Ham, "Dynamic control of the photonic band gap using quantum coherence," Phys. Rev. A 71, 013821 (2005).
[CrossRef]

Tian, X.-X.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010).
[CrossRef]

Tombesi, P.

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Vewinger, F.

L. Karpa, F. Vewinger, and M. Weitz, "Resonance beating of light stored using atomic spinor polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

Vilaseca, R.

R. Corbalan, A. N. Pisarchik, V. N. Chizhevsky, and R. Vilaseca, "Experimental study of bi-directional pumping of a far-infrared laser," Opt. Commun. 133, 225 (1997).
[CrossRef]

Vitali, D.

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Wang, H.-H.

Wang, L.

Wei, X.-G.

Weitz, M.

L. Karpa, F. Vewinger, and M. Weitz, "Resonance beating of light stored using atomic spinor polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

Wu, J.-H.

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010).
[CrossRef]

J.-H. Wu, M. Artoni, and G. C. La Rocca, "All-optical light confinement in dynamic cavities in cold atoms," Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

J.-H. Wu, M. Artoni, and G. C. La Rocca, "Controlling the photonic band structure of optically driven cold atoms," J. Opt. Soc. Am. B 25, 1840 (2008).
[CrossRef]

J.-H. Wu, G. C. La Rocca, and M. Artoni, "Controlled light-pulse propagation in driven color centers in diamond," Phys. Rev. B 77, 113106 (2008).
[CrossRef]

H.-H. Wang, X.-G. Wei, L. Wang, Y.-J. Li, D.-M. Du, J.-H. Wu, Z.-H. Kang, Y. Jiang, and J.-Y. Gao, "Optical information transfer between two light channels in a Pr3+:Y2SiO5 crystal," Opt. Express 15, 16044 (2007).
[CrossRef] [PubMed]

Xiao, M.

A.W. Brown and M. Xiao, "All-optical switching and routing based on an electromagnetically induced absorption grating," Opt. Lett. 30, 699 (2005).
[CrossRef] [PubMed]

H. Y. Ling, Y. Q. Li, and M. Xiao, "Electromagnetically induced grating: Homogeneously broadened medium," Phys. Rev. A 57, 1338 (1998).
[CrossRef]

Xu, H.

Xu, J.-H.

Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
[CrossRef]

Xue, Y.

Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
[CrossRef]

Zhu, Y.

H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

Zibrov, A. S.

A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature (London) 426, 638 (2003).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (London) (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397, 594 (1999).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulsed," Nature (London) 409, 490 (2001).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature (London) 426, 638 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. Corbalan, A. N. Pisarchik, V. N. Chizhevsky, and R. Vilaseca, "Experimental study of bi-directional pumping of a far-infrared laser," Opt. Commun. 133, 225 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (8)

E. Paspalakis and P. L. Knight, "Electromagnetically induced transparency and controlled group velocity in a multilevel system," Phys. Rev. A 66, 015802 (2002).
[CrossRef]

J.-W. Gao, J.-H. Wu, N. Ba, C.-L. Cui, and X.-X. Tian, "Efficient all-optical routing using dynamically induced transparency windows and photonic band gaps," Phys. Rev. A 81, 013804 (2010).
[CrossRef]

D. Petrosyan and Y. P. Malakyan, "Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration," Phys. Rev. A 70, 023822 (2004).
[CrossRef]

S. Rebic, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalan, "Polarization phase gate with a tripod atomic system," Phys. Rev. A 70, 032317 (2004).
[CrossRef]

H. Y. Ling, Y. Q. Li, and M. Xiao, "Electromagnetically induced grating: Homogeneously broadened medium," Phys. Rev. A 57, 1338 (1998).
[CrossRef]

X.-M. Su and B. S. Ham, "Dynamic control of the photonic band gap using quantum coherence," Phys. Rev. A 71, 013821 (2005).
[CrossRef]

D. Petrosyan, "Tunable photonic band gaps with coherently driven atoms in optical lattices," Phys. Rev. A 76, 053823 (2007).
[CrossRef]

I. Friedler, G. Kurizki, and D. Petrosyan, "Deterministic quantum logic with photons via optically induced photonic bandgaps," Phys. Rev. A 71, 023803 (2005).
[CrossRef]

Phys. Rev. B (2)

Q.-Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J.-H. Xu, and J.-Y. Gao, "Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals," Phys. Rev. B 73, 195124 (2006).
[CrossRef]

J.-H. Wu, G. C. La Rocca, and M. Artoni, "Controlled light-pulse propagation in driven color centers in diamond," Phys. Rev. B 77, 113106 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

A. Andre, M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Nonlinear optics with stationary pulses of light," Phys. Rev. Lett. 94, 063902 (2005).
[CrossRef] [PubMed]

J.-H. Wu, M. Artoni, and G. C. La Rocca, "All-optical light confinement in dynamic cavities in cold atoms," Phys. Rev. Lett. 103, 133601 (2009).
[CrossRef] [PubMed]

H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93, 073601 (2004).
[CrossRef] [PubMed]

M. Artoni and G. C. La Rocca, "Optically tunable photonic stop bands in homogeneous absorbing media," Phys. Rev. Lett. 96, 073905 (2006).
[CrossRef] [PubMed]

A. Andre and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, "Stopped light with storage time greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 063601 (2005).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229 (1999).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094 (2000).
[CrossRef] [PubMed]

L. Karpa, F. Vewinger, and M. Weitz, "Resonance beating of light stored using atomic spinor polaritons," Phys. Rev. Lett. 101, 170406 (2008).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50 (7), 36 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys. 77, 633 (2005).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1980), 6th ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(color online) Schematic diagram of a four-level tripod-type atomic system dressed by a standing-wave coupling laser ωc and a standing-wave driving laser ωd . Level ∣ 0⟩ is the only populated one in the limit of a weak probe as denoted by the filled circles.

Fig. 2.
Fig. 2.

(color online) Photonic bandgap structure (left) and reflection and transmission spectra (right) for an cold atomic sample of density N 0 = 1.0 × 1012 cm-3 and length L = 2.0 cm. Other parameters are λp = 780.792 nm, λc = λd = 780.778 nm, γ 10 = γ 20 = 1.0 kHz, γ 30 = 6.0 MHz, Ω c0 = Ω d0 = 60.0 MHz, Δ c = 0, Δ d = 6.0 MHz, Rm = 0.82, α = β = 0, and δ = 0.

Fig. 3.
Fig. 3.

(color online) Probe transmission (left) and reflection (right) spectra for the same atomic sample as in Fig. 2 Black-solid curves are obtained when the two SW fields have different periodicities (upper:α = 0 and β = 1 mrad; middle: α = 0 and β = 3 mrad; lower: α = 0 and β = 10 mrad), while red-dashed curves correspond to α = β = 0 in all panels. Other parameters are the same as in Fig. 2.

Fig. 4.
Fig. 4.

(color online) Probe transmission (left) and reflection (right) spectra for the same atomic sample as in Fig. 2. Black-solid curves correspond to δ = π/100, π/20, π/2 in the upper, middle, and lower panels, respectively, while red-dashed curves correspond to δ = 0 in all panels. Other parameters are the same as in Fig. 2.

Fig. 5.
Fig. 5.

Probe reflection (black-solid) and transmission (red-dashed) spectra for the same atomic sample as in Fig. 2. We have set Δ d = −200 MHz, Δ c = 10 MHz, and α = 3 mrad (upper); α = 6 mrad (middle); α = 10 mrad (lower). Other parameters are the same as in Fig. 2.

Fig. 6.
Fig. 6.

Probe reflection (black-solid) and transmission (red-dashed) spectra for the same atomic sample as in Fig. 2. We have set Δ d = −200 MHz, Δ c = 10 MHz, and δ = 0 (upper); δ = π/6 (middle); δ = π/2 (lower). Other parameters are the same as in Fig. 2.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ρ 30 = i Ω p γ ' 10 γ 20 γ 10 γ 20 γ 30 + Ω c 2 γ 20 + Ω d 2 γ 10 ,
Ω c 2 = Ω c 0 2 [ ( 1 + R m ) 2 cos 2 ( k c x + Φ c ) + ( 1 R m ) 2 sin 2 ( k c x + Φ c ) ]
Ω d 2 = Ω d 0 2 [ ( 1 + R m ) 2 cos 2 ( k d x + Φ d ) + ( 1 R m ) 2 sin 2 ( k d x + Φ d ) ]
a c = λ c / [ 2 cos ( α / 2 ) ] a n d a d = λ d / [ 2 cos ( β / 2 ) ] .
χ p = N 0 d 30 2 2 ε 0 h ̄ ρ 30 Ω p
[ E + ( x = nd ) E ( x = nd ) ] = M n [ E + ( x = nd d ) E ( x = nd d ) ]
[ E + ( x + a ) E ( x + a ) ] = [ e iκa E + ( x ) e iκa E ( x ) ]
R ( Δ p ) = M 12 ( Δ p ) M 22 ( Δ p ) 2 andT ( Δ p ) = 1 M 22 ( Δ p ) 2
g = a c a d a c + a d
g = cos ( α / 2 ) cos ( β / 2 ) cos ( α / 2 ) + cos ( β / 2 )

Metrics