Abstract

It is generally accepted that the lifetimes of the localized plasmonic excitations are inherently controlled by the type of the metals and the shape of the nanoparticles. However, extended plasmonic lifetimes and enhanced near-fields in nanoparticle arrays can be achieved as a result of collective excitation of plasmons. In this article, we demonstrate significantly longer plasmon lifetimes and stronger near-field enhancements by embedding the nanoantenna arrays into the substrate. Our approach offers a more homogeneous dielectric background allowing stronger diffractive couplings among plasmonic particles leading to strong suppression of the radiative damping. We observe near-field enhancements well beyond than those achievable with isolated nanoparticles. Enhanced fields obtained in these structures could be attractive for biosensing and non-linear photonics applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [CrossRef]
  3. M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992).
    [CrossRef]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  5. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
    [CrossRef] [PubMed]
  6. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
    [CrossRef] [PubMed]
  7. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
    [CrossRef]
  8. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef]
  9. A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
    [CrossRef]
  10. A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
    [CrossRef] [PubMed]
  11. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  12. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  13. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
    [CrossRef] [PubMed]
  14. F. Wang and Y. R. Shen, “General propeties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
    [CrossRef] [PubMed]
  15. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [CrossRef] [PubMed]
  16. S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. 17(11), 2813–2820 (2006).
    [CrossRef]
  17. G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79(11), 113410 (2009).
    [CrossRef]
  18. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005).
    [CrossRef]
  19. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [CrossRef] [PubMed]
  20. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [CrossRef] [PubMed]
  21. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
    [CrossRef] [PubMed]
  22. Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D (2005).
    [CrossRef]
  23. C. S. T. Microwave Studio, Computer Simulation Technology, Darmstadt, Germany, http://www.cst.com .
  24. The electric field due to point dipole are given by Aij⋅pj=k2exp(ikrij){(rij×pj)×rij/rij3+(1−ikrij)[3rij(rij⋅pj)−rij2pj]/rij5}. The first term in the brackets has 1/r dependence and corresponds to the far-field radiation. The second terms are relevant for short range interactions. In order to emphasize the importance of the phase term in the collective scattering process the interaction term is written as exp(ikrij)Cij⋅pj=Aij⋅pj in the text.
  25. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  26. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1985).
  27. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8(11), 581–583 (1983).
    [CrossRef] [PubMed]
  28. T. Jensen, L. Kelly, A. Lazarides and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10 (1999).
  29. L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
    [CrossRef]
  30. X. M. Bendaña and F. J. Garcia de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17(21), 18826–18835 (2009).
    [CrossRef]
  31. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [CrossRef]
  32. E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
    [CrossRef]
  33. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  34. A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
    [CrossRef]
  35. R. Adato, et al., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays – Supporting information,” http://www.pnas.org/content/106/46/19227/suppl/DCSupplemental
  36. B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009).
    [CrossRef] [PubMed]
  37. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
    [CrossRef]

2009 (7)

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79(11), 113410 (2009).
[CrossRef]

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[CrossRef]

B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009).
[CrossRef] [PubMed]

X. M. Bendaña and F. J. Garcia de Abajo, “Confined collective excitations of self-standing and supported planar periodic particle arrays,” Opt. Express 17(21), 18826–18835 (2009).
[CrossRef]

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[CrossRef] [PubMed]

2008 (6)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

2007 (2)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

2006 (4)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

F. Wang and Y. R. Shen, “General propeties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. 17(11), 2813–2820 (2006).
[CrossRef]

2005 (2)

Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D (2005).
[CrossRef]

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005).
[CrossRef]

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

2002 (1)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

1998 (2)

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1992 (1)

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992).
[CrossRef]

1983 (1)

1907 (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Adato, R.

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[CrossRef] [PubMed]

Altug, H.

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[CrossRef] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Auguié, B.

B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34(4), 401–403 (2009).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

Bendaña, X. M.

Botet, R.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992).
[CrossRef]

Bozhevolnyi, S. I.

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79(11), 113410 (2009).
[CrossRef]

Capasso, F.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[CrossRef]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[CrossRef] [PubMed]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Cubukcu, E.

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Della Valle, G.

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79(11), 113410 (2009).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Djurisic, A. B.

Elazar, J. M.

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Erramilli, S.

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Fan, X.

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

George, T. F.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

Grosse, S.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[CrossRef] [PubMed]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Klar, T.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Majewski, M. L.

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005).
[CrossRef]

Meier, M.

Moskovits, M.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992).
[CrossRef]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Perner, M.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Rakic, A. D.

Rayleigh, L.

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

Schatz, G. C.

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. 17(11), 2813–2820 (2006).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992).
[CrossRef]

Shen, Y. R.

F. Wang and Y. R. Shen, “General propeties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

Shvets, G.

Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D (2005).
[CrossRef]

Søndergaard, T.

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79(11), 113410 (2009).
[CrossRef]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Spirkl, W.

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Stockman, M. I.

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992).
[CrossRef]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Urzhumov, Y. A.

Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D (2005).
[CrossRef]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Wang, F.

F. Wang and Y. R. Shen, “General propeties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

Wang, X.

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

White, I. M.

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wokaun, A.

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

A. A. Yanik, R. Adato, S. Erramilli, and H. Altug, “Hybridized nanocavities as single-polarized plasmonic antennas,” Opt. Express 17(23), 20900–20910 (2009).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. 17(11), 2813–2820 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Cubukcu and F. Capasso, “Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons,” Appl. Phys. Lett. 95(20), 201101 (2009).
[CrossRef]

A. A. Yanik, X. Wang, S. Erramilli, M. K. Hong, and H. Altug, “Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays,” Appl. Phys. Lett. 93(8), 081104 (2008).
[CrossRef]

A. Artar, A. A. Yanik, and H. Altug, “Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phys. Lett. 95(5), 051105 (2009).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[CrossRef]

J. Phys. At. Mol. Opt. Phys. (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. At. Mol. Opt. Phys. 38(7), L115–L121 (2005).
[CrossRef]

J. Phys. Chem. B (1)

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Nano Lett. (1)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Nanotech. (1)

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths,” Nanotech. 17(11), 2813–2820 (2006).
[CrossRef]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Efficient suppression of radiation damping in resonant retardation-based plasmonic structures,” Phys. Rev. B 79(11), 113410 (2009).
[CrossRef]

M. I. Stockman, V. M. Shalaev, M. Moskovits, R. Botet, and T. F. George, “Enhanced Raman scattering by fractal clusters: Scale invariant theory,” Phys. Rev. B 46(5), 2821–2830 (1992).
[CrossRef]

Phys. Rev. Lett. (10)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008).
[CrossRef] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

F. Wang and Y. R. Shen, “General propeties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[CrossRef] [PubMed]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101(8), 087403 (2008).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80(19), 4249–4252 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

L. Rayleigh, “On the dynamical theory of gratings,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 79(532), 399–416 (1907).
[CrossRef]

Proc. SPIE (1)

Y. A. Urzhumov and G. Shvets, “Applications of nanoparticle arrays to coherent anti-Stokes Raman spectroscopy of chiral molecules,” Proc. SPIE 5927, 59271D (2005).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Other (5)

E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, Orlando, Fla., 1985).

R. Adato, et al., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays – Supporting information,” http://www.pnas.org/content/106/46/19227/suppl/DCSupplemental

T. Jensen, L. Kelly, A. Lazarides and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Clust. Sci. 10 (1999).

C. S. T. Microwave Studio, Computer Simulation Technology, Darmstadt, Germany, http://www.cst.com .

The electric field due to point dipole are given by Aij⋅pj=k2exp(ikrij){(rij×pj)×rij/rij3+(1−ikrij)[3rij(rij⋅pj)−rij2pj]/rij5}. The first term in the brackets has 1/r dependence and corresponds to the far-field radiation. The second terms are relevant for short range interactions. In order to emphasize the importance of the phase term in the collective scattering process the interaction term is written as exp(ikrij)Cij⋅pj=Aij⋅pj in the text.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Narrow extinction resonances in periodic arrays of nanoparticles. (a) Lattice sum and (b) extinction spectra are shown for 1D nanoparticle chains. The particles are gold ellipsoids with dimensions 1.6x0.3x0.1 μm and the background refractive index is 3. A modified long wavelength approximation (MWLA) is used for the single particle polarizability [27,28]. The particles are arranged on a 2.8 μm periodic chain. Light is normally incident and polarized perpendicular to the chain axis. The real part of S diverges at the grating transition wavelength (black vertical dashed line in (a)) while the imaginary part exhibits a drastic sign change. At wavelengths below (above) the transition wavelength, a grating order has radiative (c) (evanescent (d)) character.

Fig. 2
Fig. 2

Sample geometry and fabrication. The fabrication process is illustrated in (a). (b) On-substrate and (c) embedded particle array schematics are shown. Cross section view (inset) shows vertical wall profile. (d) SEM images of fabricated random array and periodic (in square lattice) samples are shown for (i, ii) –on-substrate nano-rod arrays and (iii, iv) –embedded nano-rod arrays.

Fig. 3
Fig. 3

(a) Length dependence of the resonance wavelength for Au rods on a Si substrate. Experimentally obtained resonances for the m = 1 and m = 3 modes are shown fitted to dipole antenna relation given in Eq. (4) (black and blue dashed lines, respectively). Effective indices determined from linear fits are indicated. The constant term, C, was 0.16 μm and 0.26 μm for the 1st and 3rd order modes, respectively. The insets correspond to the field distribution for z component of the electric field in a plane below the surface of the rod. (b) Red-shifting of the resonances is experimentally observed for embedded (d = 200 nm) individual antennas relative to on-substrate (d = 0) ones. Analytical and numerical calculations based on the ideal dipole approximation (green dashed line) and 3D FEM simulations (black stars, red dashed line indicates linear fit) are shown for the embedded rods.

Fig. 4
Fig. 4

Extinction spectra for (a) embedded (d = 200 nm) and (b) on-substrate arrays are shown with changing periodicity. The diffraction edges are indicated by the dashed vertical lines at the bottom of the figures. The feature at ~8μm in (a) is associated with the formation of a thin oxide layer on the Si substrates. (b) is adapted from PNAS [5]. The individual particle spectra obtained from random arrays are shown for comparison purposes (dashed black lines).

Fig. 5
Fig. 5

The strong effect of array periodicity on extinction spectra is illustrated. (a) Real and imaginary parts of the lattice sum (S) for a 2D periodic (P = 1.4 μm) array is shown. S is calculated via truncated numerical evaluation as described in section 2. The grating transition wavelengths are indicated by the dotted vertical lines. (b) Computed extinction efficiency for a single ellipsoidal particle (black curve) and a 2D array of 10x10 particles (red curve) via the CD method are shown. (c) Shifting in resonant wavelengths with varying periodicity for the on-substrate and embedded arrays are shown. Analytically obtained grating transition wavelengths for Si-(1,0), Si-(1,1), Si-(2,0) are also shown with dashed lines. Dotted blue/red lines correspond to the individual nanorod antenna resonance of on-substrate/embedded arrays. (d) Embedded 800 nm long nano-rods with 1.5 μm periodicity displays perfect transmission in the vicinity of a grating transition wavelength.

Fig. 6
Fig. 6

3D FDTD simulated extinction spectra are shown for (a) embedded (d = 200 nm) and (b) on-substrate nano-rod arrays for varying array periodicities (L = 800 nm for both).

Fig. 7
Fig. 7

Spatial distributions of the near-field intensity enhancements (|E/E0|2 where E0 is the incident pulse amplitude at the corresponding frequency) for an isolated nanorod particle in homogenous silicon background (1st column), in a periodic array fabricated on silicon substrate (2nd column), and in a periodic array embedded in 200 nm beneath the silicon substrate (3rd column). Note the different color scales for edge (top row) and center vertical cuts (bottom row) planes indicated in red in the cartoons to the left.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E a c t , i =   E i n c , i + j i j = 1 N e i k r i j C i j p j
E a c t , i = E i n c , i + ( j i j = 1 N e i k r i j C i j ) S α p E a c t , i
α e f f = 1 1 / α p S .
λ R e s = ( 2 n e f f / m ) L + C

Metrics