Abstract

Localized plasmon resonances are proposed in a new concept of 3D photonic crystals stacked by hybrid rods made of dielectric-cores and metallic-nanoshells. The resonant plasmon coupling of inner and outer surfaces of the metallic-nanoshells forms the localized plasmon resonances which can be flexibly tuned by mediating the dielectric cores. At the resonance wavelengths, the strong electromagnetic wave-plasmon interaction leads to the enhancement in the structural absorption by more than 20 times. The tunability of the enhanced absorption is demonstrated in experiments.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  2. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
    [CrossRef]
  3. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
    [CrossRef]
  4. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
    [CrossRef]
  5. S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
    [CrossRef]
  6. C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
    [CrossRef]
  7. M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
    [CrossRef] [PubMed]
  8. S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
    [CrossRef]
  9. V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, “Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region,” Opt. Express 15(13), 8454–8464 (2007).
    [CrossRef] [PubMed]
  10. A. Tal, Y. S. Chen, H. E. Williams, R. C. Rumpf, and S. M. Kuebler, “Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals,” Opt. Express 15(26), 18283–18293 (2007).
    [CrossRef] [PubMed]
  11. C. Luo, S. Johnson, J. Joannopoulos, and J. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11(7), 746–754 (2003).
    [CrossRef] [PubMed]
  12. A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
    [CrossRef]
  13. J. Lourtioz, “Les cristaux photoniques métalliques,” C. R. Phys. 3(1), 79–88 (2002).
    [CrossRef]
  14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  15. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  16. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  17. Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
    [CrossRef]
  18. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
    [CrossRef]
  19. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  20. T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
    [CrossRef]
  21. M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
    [CrossRef]
  22. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  23. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
    [CrossRef]
  24. R. F. Service, “Solar energy. Can the upstarts top silicon?” Science 319(5864), 718–720 (2008).
    [CrossRef] [PubMed]
  25. J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, 4th ed. (Addison-Wesley, Reading, 1993).
  26. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
    [CrossRef] [PubMed]
  27. Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
    [CrossRef]
  28. J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
    [CrossRef] [PubMed]
  29. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [CrossRef]
  30. M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantum dot-doped polymer nanocomposite with three-dimensional photonic crystals,” Adv. Mater. 20(7), 1329–1332 (2008).
    [CrossRef]

2009 (1)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

2008 (7)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
[CrossRef]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

R. F. Service, “Solar energy. Can the upstarts top silicon?” Science 319(5864), 718–720 (2008).
[CrossRef] [PubMed]

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantum dot-doped polymer nanocomposite with three-dimensional photonic crystals,” Adv. Mater. 20(7), 1329–1332 (2008).
[CrossRef]

2007 (4)

2006 (5)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
[CrossRef] [PubMed]

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[CrossRef]

2004 (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

2003 (6)

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

C. Luo, S. Johnson, J. Joannopoulos, and J. Pendry, “Negative refraction without negative index in metallic photonic crystals,” Opt. Express 11(7), 746–754 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

2002 (3)

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

J. Lourtioz, “Les cristaux photoniques métalliques,” C. R. Phys. 3(1), 79–88 (2002).
[CrossRef]

2000 (2)

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Adeli, R.

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

Alizadeh, R.

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Borisov, A. G.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Bur, J.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Chen, Y. S.

Chen, Y.-S.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[CrossRef]

Choi, K. K.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Chow, E.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Deubel, M.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

El-Kady, I.

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Fleming, G. R.

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

García De Abajo, F. J.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Goldberg, A.

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantum dot-doped polymer nanocomposite with three-dimensional photonic crystals,” Adv. Mater. 20(7), 1329–1332 (2008).
[CrossRef]

J. Li, B. Jia, G. Zhou, and M. Gu, “Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material,” Opt. Express 14(22), 10740–10745 (2006).
[CrossRef] [PubMed]

M. Straub and M. Gu, “Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization,” Opt. Lett. 27(20), 1824–1826 (2002).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Ho, K. M.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Jia, B.

Joannopoulos, J.

John, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Johnson, S.

Juodkazis, K.

Juodkazis, S.

Juodkazyte, J.

Kim, Y. S.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

Kuebler, S. M.

A. Tal, Y. S. Chen, H. E. Williams, R. C. Rumpf, and S. M. Kuebler, “Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals,” Opt. Express 15(26), 18283–18293 (2007).
[CrossRef] [PubMed]

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[CrossRef]

Kuo, C.-Y.

C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
[CrossRef]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Li, J.

Li, Z. Y.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

Lin, S. Y.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20(7), 1538–1541 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Lin, S.-Y.

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Linden, S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Lourtioz, J.

J. Lourtioz, “Les cristaux photoniques métalliques,” C. R. Phys. 3(1), 79–88 (2002).
[CrossRef]

Lu, S.-Y.

C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
[CrossRef]

Lu, T.-M.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

Luo, C.

Mahmoudi, A.

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

Misawa, H.

Mizeikis, V.

Moreno, S.

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Ozin, G. A.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Pendry, J.

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Pérez-Willard, F.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Plessen, G. V.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Plet, C.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rill, M. S.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Rumpf, R. C.

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Semnani, A.

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

Service, R. F.

R. F. Service, “Solar energy. Can the upstarts top silicon?” Science 319(5864), 718–720 (2008).
[CrossRef] [PubMed]

Sigalas, M. M.

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

Staude, I.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Straub, M.

Sugawara, Y.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Tal, A.

A. Tal, Y. S. Chen, H. E. Williams, R. C. Rumpf, and S. M. Kuebler, “Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals,” Opt. Express 15(26), 18283–18293 (2007).
[CrossRef] [PubMed]

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[CrossRef]

Tarozaite, R.

Teperik, T. V.

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

Thiel, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Torrance, D. B.

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[CrossRef]

Ventura, M. J.

M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantum dot-doped polymer nanocomposite with three-dimensional photonic crystals,” Adv. Mater. 20(7), 1329–1332 (2008).
[CrossRef]

von Freymann, G.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Wegener, M.

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Williams, H. E.

Wong, S.

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

Ye, D.-X.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

Zhou, G.

Zijlstra, P.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

Y.-S. Chen, A. Tal, D. B. Torrance, and S. M. Kuebler, “Fabrication and characterization of three-dimensional silver-coated polymeric microstructures,” Adv. Funct. Mater. 16(13), 1739–1744 (2006).
[CrossRef]

Adv. Mater. (2)

S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete pohotonic band gap in chalcogenide glasses,” Adv. Mater. 18(3), 265–269 (2006).
[CrossRef]

M. J. Ventura and M. Gu, “Engineering spontaneous emission in a quantum dot-doped polymer nanocomposite with three-dimensional photonic crystals,” Adv. Mater. 20(7), 1329–1332 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

S. Y. Lin, S. Moreno, and G. R. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83(2), 380–382 (2003).
[CrossRef]

C.-Y. Kuo and S.-Y. Lu, “Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime,” Appl. Phys. Lett. 92(12), 121919 (2008).
[CrossRef]

C. R. Phys. (1)

J. Lourtioz, “Les cristaux photoniques métalliques,” C. R. Phys. 3(1), 79–88 (2002).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

A. Mahmoudi, A. Semnani, R. Alizadeh, and R. Adeli, “Negative refraction of a three-dimensional metallic photonic crystal,” Eur. Phys. J. Appl. Phys. 39(1), 27–32 (2007).
[CrossRef]

J. Appl. Phys. (2)

Z. Y. Li, I. El-Kady, K. M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93(1), 38–42 (2003).
[CrossRef]

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99(8), 083104 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8(10), 3238–3243 (2008).
[CrossRef] [PubMed]

Nat. Mater. (2)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat. Mater. 7(7), 543–546 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostuctured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Nature (3)

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. G. Fleming, S.-Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62(23), 15299–15302 (2000).
[CrossRef]

S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62(4), R2243–R2246 (2000).
[CrossRef]

Phys. Status Solidi (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008) (a).
[CrossRef]

Science (3)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

R. F. Service, “Solar energy. Can the upstarts top silicon?” Science 319(5864), 718–720 (2008).
[CrossRef] [PubMed]

Other (1)

J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic Theory, 4th ed. (Addison-Wesley, Reading, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a, b) Schematic of parallel MRods (a) and HRods (b). The HRod consists of a dielectric rod (with width w, height h, rod spacing a, refractive index n) and a silver nanoshell (with thickness Ds ). (c, d, e) Schematic of the charge density distributions (top panels) and snapshots of the calculated E-field (linear scale, bottom panels) in the cross-section for an MRod (c) and an HRod (d, e) at the noted frequency. The distributions of the E-field correspond well to the charge distributions. HRod parameters: w=240 nm, h=2.5w (for all calculations in this article), a=1 μm, Ds=10 nm and n=1.56. MRods are calculated based on the HRod parameters by replacing dielectrics with silver. All simulation results in this paper are carried with the software package CST Microwave Studio. For simplicity, we use silver with permittivity described by the Drude model with plasma frequency ωpl =1.37×1016 s−1 and collision frequency ωcol =8.5×1013 s−1 [7].

Fig. 2
Fig. 2

(a) Calculated absorption spectra of the HRods (solid line) and MRods (dashed line) with the same parameters in Fig. 1c-e. Inset: Center wavelength (λc ) of the 1st order LPR versus the dielectric rod width (w) for a=1 μm, w=240 nm, Ds=10 nm, n=1.56. (b) Calculated LPR absorption spectra of HRods with different w as noted. For the different values of w, the ratio h/w is kept constant at 2.5. Variations in peak values are less than 1.2%. Other calculation parameters are the same as those in (a). Here the absorption is simply defined as 1-R-T, where R and T are the calculated reflection and transmission intensities. The calculated reflection and transmission intensity spectra are determined from the reflection and transmission coefficients, respectively, which are obtained with the CST software package.

Fig. 3
Fig. 3

(a, b) Schematic of a 3D MPC (a) and a 3D HPC (b) of four layers with an in-plane rod spacing of a and a four-layer height of c (c=1.414a). In following simulations, the incident light is linearly polarized perpendicular to the first-layer rods. (c, d) Calculated reflection (circle) and absorption (solid line) spectra of a 3D MPC (c) and a 3D HPC (d). Inset: Calculated spatial distribution of the amplitude of the E-field inside a 3D MPC and a 3D HPC at wavelength 1.73 μm (the cross-sections are perpendicular to the first-layer rods and the outlines of the rods are denoted by the dashed lines; the field amplitude is normalized to the color bar in the inset of Fig. d). Simulation parameters of the HPC: a=1 μm, w=200 nm, Ds=20 nm, n=1.56; the MPC is based on the corresponding HPC by replacing dielectrics with silver.

Fig. 4
Fig. 4

(a) Calculated absorption spectra of 3D HPCs for different refractive indices (n) of the embedded dielectrics at 1.0, 1.2 and 1.56. Inset: Typical reflection spectrum of a HPC. The band edge region is distinguished as a high-energy edge (H point, corresponding to the band edge in Fig. 3(c)] and a low-energy edge (L point). (b) Absorption enhancement [Amax-HPC/Amax-HRod ) between 3D HPCs and 2D HRods as a function of the LPR wavelength (λc ) under different rod spacing a. Amax-HPC and Amax-HRod are the LPR-enhanced absorption of 3D HPCs and 2D HRods, respectively. The value of λc (bottom axis) and the corresponding enhancement factor are obtained when n (top axis) is tuned, which follows a linear relation by λc=0.0134+1.317n. The single-headed and double-headed arrows indicate the wavelength positions of the high-energy (H) and low-energy (L) band edges of the 3D HPC, respectively. The wavelength- and lattice-dependent absorption enhancement clearly illustrates the PBG effects on the LPR-enhanced absorption. Calculation parameters: w=250 nm, Ds=20 nm.

Fig. 5
Fig. 5

(a) SEM image of a 3D polymeric woodpile DPC after the electroless silver deposition process [24]. Silver particles were nucleated on the surfaces of the DPC to form a 3D silver HPC. Inset: close view of the DPC and the HPC. (b, c) Measured and calculated reflection and absorption spectra of the 3D silver HPC in (a). Simulation parameters are a=0.9 μm, w=360 nm, h=510 nm, Ds=15 nm (in average), n=1.47, ωpl =1.37×1016 s−1 , and ωcol =1.7×1014 s−1 , which fit best with our experimental conditions. (d) Experimental absorption spectra of 3D HPCs with different dielectric rod width as noted. The value of λc is tuned from 1.51 µm to 1.75 µm when the rod width increases from 305 nm to 387 nm. The spectra are vertically shifted for clear display.

Metrics