Abstract

Wave-optics analysis is performed to investigate the benefits of utilizing Bragg-reflectors and inverted ZnO opals as intermediate reflectors in micromorph cells. The Bragg-reflector and the inverted ZnO opal intermediate reflector increase the current generated in a 100nm thick upper a-Si:H cell within a micromorph cell by as much as 20% and 13%, respectively. The current generated in the bottom μc-Si:H cell within the micromorph is also greater when the Bragg-reflector is used as the intermediate reflector. The Bragg-reflector outperforms the ZnO inverted opal because it has a larger stop-gap, is optically thin, and due to greater absorption losses that occur in the opaline intermediate reflectors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic Microcrystalline Silicon (µc-Si:H)- a promising new thin film solar cell material” in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, New York, 1994), pp. 409–412.
  2. G. L. Martí, “Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
    [CrossRef]
  3. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
    [CrossRef]
  4. A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: A review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
    [CrossRef]
  5. D. Fischer, S. Dubail, J. A. A. Selvan, N. P. Vaucher, R. Platz, and C. Hof, Uu. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, K. D. Ufert, “The “micromorph” solar cell: Extending a-Si:H technology towards thin film crystalline silicon” in Proceedings of the 25th Photovoltaics Specialists Conference (IEEE, New York, 1996), pp. 1053–1056.
  6. P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
    [CrossRef]
  7. J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
    [CrossRef]
  8. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  9. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light second edition, (Princeton: Princeton University Press 2008).
  11. G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing modeling,” Opt. Photon. News 14(2), 38–43 (2003).
    [CrossRef]
  12. D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004).
    [CrossRef]
  13. L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
    [CrossRef]
  14. P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
    [CrossRef]
  15. P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
    [CrossRef]
  16. M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
    [CrossRef]
  17. H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005).
    [CrossRef]
  18. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
    [CrossRef]
  19. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
    [CrossRef]
  20. ASTMG, 173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
  21. L. Meng and M. dos Santos, “Characterization of ZnO films prepared by dc reactive magnetron sputtering at different oxygen partial pressures,” Vacuum 46(8-10), 1001–1004 (1995).
    [CrossRef]
  22. F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  23. P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys. 48(12), 5227–5236 (1977).
    [CrossRef]
  24. W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion by the effective medium approximation method,” Jpn. J. Appl. Phys. 36(Part 1, No. 3A), 1094–1098 (1997).
    [CrossRef]
  25. D. Aspnes, J. Theeten, and F. Hottier,, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
    [CrossRef]
  26. A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
    [CrossRef]
  27. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
    [CrossRef]
  28. T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
    [CrossRef] [PubMed]
  29. A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17(10), 8439–8446 (2009).
    [CrossRef] [PubMed]

2009

T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
[CrossRef] [PubMed]

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17(10), 8439–8446 (2009).
[CrossRef] [PubMed]

2008

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

2007

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

2006

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

2005

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005).
[CrossRef]

2004

D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

2003

G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing modeling,” Opt. Photon. News 14(2), 38–43 (2003).
[CrossRef]

1999

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

1997

W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion by the effective medium approximation method,” Jpn. J. Appl. Phys. 36(Part 1, No. 3A), 1094–1098 (1997).
[CrossRef]

1996

G. L. Martí, “Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[CrossRef]

1995

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: A review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

L. Meng and M. dos Santos, “Characterization of ZnO films prepared by dc reactive magnetron sputtering at different oxygen partial pressures,” Vacuum 46(8-10), 1001–1004 (1995).
[CrossRef]

1987

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1979

D. Aspnes, J. Theeten, and F. Hottier,, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

1977

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys. 48(12), 5227–5236 (1977).
[CrossRef]

Andreani, L.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Andreani, L. C.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Arlinghaus, E. G.

D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004).
[CrossRef]

Aspnes, D.

D. Aspnes, J. Theeten, and F. Hottier,, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

Bailat, J.

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Bajoni, D.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Balestreri, A.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Ballif, C.

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

Bielawny, A.

Bielawny, J.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Billet, A.

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

Blanco, A.

H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005).
[CrossRef]

Buechel, A.

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

Buehlmann, P.

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

Cao, H.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Carius, R.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Carlson, D. E.

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys. 48(12), 5227–5236 (1977).
[CrossRef]

Celasco, E.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Chang, R. P. H.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Chen, J. I. L.

T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
[CrossRef] [PubMed]

Cho, W. Y.

W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion by the effective medium approximation method,” Jpn. J. Appl. Phys. 36(Part 1, No. 3A), 1094–1098 (1997).
[CrossRef]

Chutinan, A.

P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
[CrossRef]

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Dominé, D.

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

dos Santos, M.

L. Meng and M. dos Santos, “Characterization of ZnO films prepared by dc reactive magnetron sputtering at different oxygen partial pressures,” Vacuum 46(8-10), 1001–1004 (1995).
[CrossRef]

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Enoch, S.

G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing modeling,” Opt. Photon. News 14(2), 38–43 (2003).
[CrossRef]

Feltrin, A.

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

Galli, M.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

García, P. D.

H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005).
[CrossRef]

Geobaldo, F.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Gerace, D.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Golmayo, D.

H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005).
[CrossRef]

Gralak, B.

G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing modeling,” Opt. Photon. News 14(2), 38–43 (2003).
[CrossRef]

Heiny, R.

D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004).
[CrossRef]

Hottier, F.

D. Aspnes, J. Theeten, and F. Hottier,, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

John, S.

P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
[CrossRef]

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Juárez, H.

H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005).
[CrossRef]

Keppner, H.

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: A review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

Kherani, N. P.

T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
[CrossRef] [PubMed]

P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
[CrossRef]

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Knez, M.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Kroll, U.

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Lambertz, A.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Lederer, F.

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17(10), 8439–8446 (2009).
[CrossRef] [PubMed]

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Lee, S.-M.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Lim, K. S.

W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion by the effective medium approximation method,” Jpn. J. Appl. Phys. 36(Part 1, No. 3A), 1094–1098 (1997).
[CrossRef]

Liscidini, M.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

López, C.

H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005).
[CrossRef]

Loso, E.

T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
[CrossRef] [PubMed]

Martí, G. L.

G. L. Martí, “Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[CrossRef]

Meier, J.

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Meillaud, F.

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

Meng, L.

D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004).
[CrossRef]

L. Meng and M. dos Santos, “Characterization of ZnO films prepared by dc reactive magnetron sputtering at different oxygen partial pressures,” Vacuum 46(8-10), 1001–1004 (1995).
[CrossRef]

Miclea, P. T.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Míguez, H.

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Mihi, A.

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Norris, D.

D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004).
[CrossRef]

O’Brien, P. G.

T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
[CrossRef] [PubMed]

P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
[CrossRef]

O'Brien, P. G.

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Ozin, G. A.

T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
[CrossRef] [PubMed]

P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
[CrossRef]

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Pallavidino, L.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Peters, M.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Platz, R.

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: A review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

Quaglio, M.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Razo, D.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Ricciardi, C.

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Rockstuhl, C.

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17(10), 8439–8446 (2009).
[CrossRef] [PubMed]

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Schade, H.

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Scharrer, M.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Scriven, L. E.

D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004).
[CrossRef]

Shah, A.

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: A review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

Sipe, J. E.

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Steidl, L.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Steinhauser, J.

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

Suezaki, T.

T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
[CrossRef] [PubMed]

Tayeb, G.

G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing modeling,” Opt. Photon. News 14(2), 38–43 (2003).
[CrossRef]

Tetreault, N.

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Theeten, J.

D. Aspnes, J. Theeten, and F. Hottier,, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

Üpping, J.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Vekris, E.

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Wehrspohn, R. B.

A. Bielawny, C. Rockstuhl, F. Lederer, and R. B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Opt. Express 17(10), 8439–8446 (2009).
[CrossRef] [PubMed]

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Whittaker, D. M.

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys. 48(12), 5227–5236 (1977).
[CrossRef]

Wu, X.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamilov, A.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

Zanzucchi, P. J.

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys. 48(12), 5227–5236 (1977).
[CrossRef]

Zentel, R.

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Zukotynski, S.

P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
[CrossRef]

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

Adv. Mater.

D. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline photonic crystals: How does self assembley work?” Adv. Mater. 16(16), 1393–1399 (2004).
[CrossRef]

P. G. O'Brien, N. P. Kherani, S. Zukotynski, G. A. Ozin, E. Vekris, N. Tetreault, A. Chutinan, S. John, A. Mihi, and H. Míguez, “Enhanced photoconductivity in thin-film semiconductors optically coupled to photonic crystals,” Adv. Mater. 19(23), 4177–4182 (2007).
[CrossRef]

P. G. O’Brien, N. P. Kherani, A. Chutinan, G. A. Ozin, S. John, and S. Zukotynski, “Silicon photovoltaics using conducting photonic crystal back-reflectors,” Adv. Mater. 20(8), 1577–1582 (2008).
[CrossRef]

H. Juárez, P. D. García, D. Golmayo, A. Blanco, and C. López, “ZnO inverse opals by chemical vapour deposition,” Adv. Mater. 17(22), 2761–2765 (2005).
[CrossRef]

T. Suezaki, P. G. O’Brien, J. I. L. Chen, E. Loso, N. P. Kherani, and G. A. Ozin, “Tailoring the Electrical Properties of Inverse Silicon Opals - A Step Towards Optically Amplified Silicon Solar Cells,” Adv. Mater. 21(5), 559–563 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, “Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition,” Appl. Phys. Lett. 86(15), 151113 (2005).
[CrossRef]

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

P. Buehlmann, J. Bailat, D. Dominé, A. Billet, F. Meillaud, A. Feltrin, and C. Ballif, “In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells,” Appl. Phys. Lett. 91(14), 143505 (2007).
[CrossRef]

J. Appl. Phys.

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys. 48(12), 5227–5236 (1977).
[CrossRef]

J. Non-Cryst. Solids

L. Pallavidino, D. Razo, F. Geobaldo, A. Balestreri, D. Bajoni, M. Galli, L. Andreani, C. Ricciardi, E. Celasco, and M. Quaglio,, “Synthesis, characterization and modeling of silicon based opals,” J. Non-Cryst. Solids 352(9-20), 1425–1429 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion by the effective medium approximation method,” Jpn. J. Appl. Phys. 36(Part 1, No. 3A), 1094–1098 (1997).
[CrossRef]

Opt. Express

Opt. Photon. News

G. Tayeb, B. Gralak, and S. Enoch, “Structural colors in nature and butterfly-wing modeling,” Opt. Photon. News 14(2), 38–43 (2003).
[CrossRef]

Phys. Rev. B

D. Aspnes, J. Theeten, and F. Hottier,, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20(8), 3292–3302 (1979).
[CrossRef]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999).
[CrossRef]

M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B 77(3), 035324 (2008).
[CrossRef]

Phys. Rev. Lett.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Phys. Stat. Solidi A

J. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Stat. Solidi A 205(12), 2796–2810 (2008).
[CrossRef]

Prog. Photovolt. Res. Appl.

A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film Silicon Solar Cell Technology,” Prog. Photovolt. Res. Appl. 12(23), 113–142 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells

A. V. Shah, R. Platz, and H. Keppner, “Thin-film silicon solar cells: A review and selected trends,” Sol. Energy Mater. Sol. Cells 38(1-4), 501–520 (1995).
[CrossRef]

G. L. Martí, “Araújo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Sol. Energy Mater. Sol. Cells 43(2), 203–222 (1996).
[CrossRef]

Thin Solid Films

A. Shah, J. Meier, A. Buechel, U. Kroll, J. Steinhauser, F. Meillaud, H. Schade, and D. Dominé, “Towards very low-cost mass production of thin-film silicon photovoltaic (PV) solar modules on glass,” Thin Solid Films 502(1-2), 292–299 (2006).
[CrossRef]

Vacuum

L. Meng and M. dos Santos, “Characterization of ZnO films prepared by dc reactive magnetron sputtering at different oxygen partial pressures,” Vacuum 46(8-10), 1001–1004 (1995).
[CrossRef]

Other

F. David, Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, and A. Shah, “Intrinsic Microcrystalline Silicon (µc-Si:H)- a promising new thin film solar cell material” in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion (IEEE, New York, 1994), pp. 409–412.

D. Fischer, S. Dubail, J. A. A. Selvan, N. P. Vaucher, R. Platz, and C. Hof, Uu. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, K. D. Ufert, “The “micromorph” solar cell: Extending a-Si:H technology towards thin film crystalline silicon” in Proceedings of the 25th Photovoltaics Specialists Conference (IEEE, New York, 1996), pp. 1053–1056.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light second edition, (Princeton: Princeton University Press 2008).

ASTMG, 173–03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of structures modeled in this work (a) the micromorph cell, without an IR. (b) The filling fraction of an inverted ZnO opal, 9 layers thick, projected onto its (110) crystallographic plane.

Fig. 5
Fig. 5

The current generated under direct solar irradiance as a function of the incident angle, θ, defined here as the angle between the normal of the substrate on which the micromorph cell is deposited and the direction of the incident solar irradiance, is shown for the micromorph cells wherein the intermediate reflector is a single ZnO film (dotted black lines), a Bragg-reflector with 1.5 (dashed grey lines) and 3.5 (solid grey lines) bilayers, and an inverted ZnO opal (black lines). The curves representing the current generated in the bottom µc-Si:H cells are labeled with their corresponding IRs while the curves representing the current generated in the upper a-Si:H cells, which are the bottommost curves for low values of θ, do not pass through a label. The points at which the micromorph cells become bottom-limited are enclosed in circles.

Fig. 2
Fig. 2

(a) Schematic diagram of a homogeneous ZnO film functioning as an IR in a micromorph tandem cell. (b) The absorption spectra for the top 100nm thick a-Si:H cell in the micromorph tandem cell without an IR (solid grey line) and with a 59nm thick ZnO film (solid black line) functioning as an IR. The absorption in the underlying μc-Si:H cell for the cases in which the IR is absent and in which the IR is the ZnO film are shown as dashed grey and black lines, respectively. Also, the reflection from the micromorph cells with and without the ZnO film functioning as the IR are shown as the dotted black and grey lines respectively. There is a peak in the reflectance from the micromorph cell with the IR in the vicinity of ~650nm on account of Fabry-Perot oscillations occurring in the ZnO film.

Fig. 3
Fig. 3

(a) Schematic diagram of a Bragg-reflector comprising alternating layers of μc-Si:H and ZnO functioning as an IR in a micromorph tandem cell. (b) The absorption spectra for the top 100nm thick a-Si:H cell in the micromorph tandem cell without an IR (solid grey line) and with a ZnO/μc-Si:H Bragg-reflector (solid black line) functioning as an IR. The absorption in the Bragg reflector and the underlying μc-Si:H cell are shown as the dotted and dashed black lines, respectively. The reflectance from a ZnO/μc-Si:H Bragg-reflector, similar to that used as the IR but wherein the medium above and below the reflector is air and μc-Si:H, respectively, is plotted as the dotted grey line. In calculating this reflectance spectra absorption in the Bragg-reflector has been neglected in order to emphasize its reflectance peak.

Fig. 4
Fig. 4

(a) Schematic diagram of an inverted ZnO opal functioning as an IR in a micromorph tandem cell. (b) The absorption spectra for the top 100nm thick a-Si:H cell in the micromorph tandem cell without an IR (solid grey line) and with an inverted ZnO opaline PC (solid black line) functioning as an IR. The absorption in the PC and the underlying μc-Si:H cell are shown as the dotted and dashed black lines, respectively. The reflection from a 13-layered ZnO inverted opal, similar to that used as the IR, but wherein the medium above and below the reflector is air and μc-Si:H, respectively, is also plotted as the dotted grey line. In calculating this reflectance spectra absorption in the ZnO inverted opal has been neglected in order to emphasize its reflectance peak.

Fig. 6
Fig. 6

The current generated under direct solar irradiance as a function of the thickness of the upper a-Si:H cell for micromorph cells wherein the intermediate reflector is a single ZnO film (dotted black lines), a Bragg-reflector with 1.5 (dashed grey lines) and 3.5 (solid grey lines) bilayers, and an inverted ZnO opal (black lines). The curves representing the current generated in the bottom µc-Si:H cells are labeled with their corresponding IRs while the curves representing the current generated in the upper a-Si:H cells, which are the monotonically increasing curves, do not pass through a label. The points at which the micromorph cells become bottom-limited are enclosed in circles.

Fig. 7
Fig. 7

Indices of refraction (a) and extinction coefficients (b) for the ZnO, a-Si:H and μc-Si:H used to perform the calculations herein.

Tables (3)

Tables Icon

Table 1 The current generated in the a-Si:H and µc-Si:H cells within micromorph cells with different IRs and the corresponding current losses due to reflection and parasitic absorption occurring in the IRα

Tables Icon

Table 2 The incident angle of the solar irradiance at which micromorph cells with different IRs become bottom-limitedα

Tables Icon

Table 3 The thickness of the upper a-Si:H cell at which micromorph cells with different IRs become bottom-limited and the corresponding generated currentα

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

J a S i : H = q ω = 1.1 e V ω     = 4.1 e V A ( ω ) ​   S ( ω ) d ω
J μ c S i : H = q ω = 1.1 e V ω = 4.1 e V T ( ω ) S ( ω ) d ω
J R L = q ω = 1.1 e V ω     = 4.1 e V R ( ω ) ​   S ( ω ) d ω
J P L = q ω = 1.1 e V ω = 4.1 e V A I R ( ω ) S ( ω ) d ω

Metrics