Abstract

Using a cavity mode model we study numerically the impact of bandwidth and spectral response profile of fibre Bragg gratings on four-wave-mixing-induced spectral broadening of radiation generated in 6 km and 22 km SMF-based Raman fibre lasers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press (2006).
  2. A. Hasegawa, and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).
  3. V. E. Zakharov, and E. S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Heidelberg, 1998).
  4. R. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, New York, 2005)
  5. M. Zheltikov, “Let there be white light: supercontinuum generation by ultra short laser pulses,” Phys. Usp. 49(6), 605 (2006).
    [CrossRef]
  6. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonics crystal fibre,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  7. S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
    [CrossRef]
  8. J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
    [CrossRef]
  9. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
    [CrossRef]
  10. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
    [CrossRef]
  11. V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16690 .
    [CrossRef] [PubMed]
  12. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
    [CrossRef]
  13. P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: From experiments to questions about validity of usual models,” Opt. Commun. 237(1–3), 201–212 (2004).
    [CrossRef]
  14. R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, “Highly Efficient and High-Power Raman Fiber Laser Based on Broadband Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 24(12), 5039–5043 (2006).
    [CrossRef]
  15. Y. Wang and H. Po, “Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers,” Meas. Sci. Technol. 14(6), 883–891 (2003).
    [CrossRef]
  16. V. E. Zakharov, V. S. L’vov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer-Verlag, Berlin, 1992).
  17. G. E. Falkovich, “Introduction to Turbulence Theory Lecture Notes on Turbulence and Coherent Structures in Fluids”, Plasmas and Nonlinear Media Vol. 4 (World Scientific, Singapore, 2006).
  18. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
    [CrossRef] [PubMed]
  19. J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous Spatial and Spectral Transparency in Ultralong Fiber Lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
    [CrossRef] [PubMed]

2009 (1)

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[CrossRef]

2008 (2)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous Spatial and Spectral Transparency in Ultralong Fiber Lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (5)

M. Zheltikov, “Let there be white light: supercontinuum generation by ultra short laser pulses,” Phys. Usp. 49(6), 605 (2006).
[CrossRef]

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonics crystal fibre,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, “Highly Efficient and High-Power Raman Fiber Laser Based on Broadband Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 24(12), 5039–5043 (2006).
[CrossRef]

2004 (1)

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: From experiments to questions about validity of usual models,” Opt. Commun. 237(1–3), 201–212 (2004).
[CrossRef]

2003 (2)

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[CrossRef]

Y. Wang and H. Po, “Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers,” Meas. Sci. Technol. 14(6), 883–891 (2003).
[CrossRef]

Ania Castanon, J. D.

S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Ania-Castañón, J. D.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous Spatial and Spectral Transparency in Ultralong Fiber Lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16690 .
[CrossRef] [PubMed]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Babin, S. A.

Bélanger, E.

Bernier, M.

Bouteiller, J.-C.

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[CrossRef]

Chen, X.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Churkin, D. V.

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonics crystal fibre,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Déry, B.

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonics crystal fibre,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Ellingham, T. J.

S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Falkovich, G.

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[CrossRef]

Faucher, D.

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonics crystal fibre,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Harper, P.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous Spatial and Spectral Transparency in Ultralong Fiber Lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16690 .
[CrossRef] [PubMed]

Ibbotson, R.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Ismagulov, A. E.

Kablukov, S. I.

Karalekas, V.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous Spatial and Spectral Transparency in Ultralong Fiber Lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16690 .
[CrossRef] [PubMed]

Kobtsev, S. M.

S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Kukarin, S.

S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Mezentsev, V. K.

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Po, H.

Y. Wang and H. Po, “Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers,” Meas. Sci. Technol. 14(6), 883–891 (2003).
[CrossRef]

Podivilov, E. V.

Randoux, S.

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: From experiments to questions about validity of usual models,” Opt. Commun. 237(1–3), 201–212 (2004).
[CrossRef]

Smirnov, S. V.

S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Suret, P.

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: From experiments to questions about validity of usual models,” Opt. Commun. 237(1–3), 201–212 (2004).
[CrossRef]

Turitsyn, S. K.

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous Spatial and Spectral Transparency in Ultralong Fiber Lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

V. Karalekas, J. D. Ania-Castañón, P. Harper, S. A. Babin, E. V. Podivilov, and S. K. Turitsyn, “Impact of nonlinear spectral broadening in ultra-long Raman fibre lasers,” Opt. Express 15(25), 16690–16695 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16690 .
[CrossRef] [PubMed]

S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Turitsyna, E. G.

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[CrossRef]

Vallée, R.

Wang, Y.

Y. Wang and H. Po, “Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers,” Meas. Sci. Technol. 14(6), 883–891 (2003).
[CrossRef]

Zhang, L.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Zheltikov, M.

M. Zheltikov, “Let there be white light: supercontinuum generation by ultra short laser pulses,” Phys. Usp. 49(6), 605 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

Y. Wang and H. Po, “Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers,” Meas. Sci. Technol. 14(6), 883–891 (2003).
[CrossRef]

Opt. Commun. (1)

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: From experiments to questions about validity of usual models,” Opt. Commun. 237(1–3), 201–212 (2004).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

S. V. Smirnov, J. D. Ania Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, and S. K. Turitsyn, “Optical spectral broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12(2), 122–147 (2006).
[CrossRef]

Phys. Rev. A (2)

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, “Optical turbulence and spectral condensate in long-fiber lasers,” Phys. Rev. A 80(3), 031804 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous Spatial and Spectral Transparency in Ultralong Fiber Lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

Phys. Usp. (1)

M. Zheltikov, “Let there be white light: supercontinuum generation by ultra short laser pulses,” Phys. Usp. 49(6), 605 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonics crystal fibre,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (6)

L. F. Mollenauer, and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press (2006).

A. Hasegawa, and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).

V. E. Zakharov, and E. S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Heidelberg, 1998).

R. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, New York, 2005)

V. E. Zakharov, V. S. L’vov, and G. E. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer-Verlag, Berlin, 1992).

G. E. Falkovich, “Introduction to Turbulence Theory Lecture Notes on Turbulence and Coherent Structures in Fluids”, Plasmas and Nonlinear Media Vol. 4 (World Scientific, Singapore, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic experimental setup; (b) Reflectivity profiles of considered FBGs: solid -Gaussian, dashed - Super-Gaussian.

Fig. 2
Fig. 2

Spectral power (in logarithmic scale) is shown for FBGs bandwidths varying from 1 to 5 nm and 600 mW total pump power. Upper pictures – 6 km laser, bottom – 22 km cavity.

Fig. 7
Fig. 7

Normalised histograms of generated power for Gaussian (a,c) and Super-Gaussian (b,d) FBGs and 6 km (a,b) and 22-km (c,d) cavity lengths. Here the total pump power is 600 mW and FBGs with 3 nm bandwidth is used.

Fig. 6
Fig. 6

Total generated power (a, b) and root mean square bandwidth (c, d) versus the total pump power for different FBGs. Solid lines - 6 km laser, dashed lines - 22 km cavity.

Fig. 3
Fig. 3

Spectral power for 3nm FBGs and different pump powers.

Fig. 4
Fig. 4

Spectra generation for Gaussian FBGs with 1 and 5 nm bandwidth.

Fig. 5
Fig. 5

Spectra generation for Super-Gaussian FBGs with 1 and 5 nm bandwidth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ r t L d E m d t = [ g ( P ) α δ m L + i β 2 Ω m 2 ] E m i γ k , l E k E l E k + l m *

Metrics