Abstract

We observe a novel type of vector dark soliton in a fiber ring laser. The vector dark soliton consists of stable localized structures separating the two orthogonal linear polarization eigenstates of the laser emission and is visible only when the total laser emission is measured. Numerical simulations based on the coupled complex Ginzburg-Landau equations have well reproduced the results of the experimental observation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Iii, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991).
    [CrossRef] [PubMed]
  2. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
    [CrossRef] [PubMed]
  3. D. Y. Tang, L. M. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
    [CrossRef] [PubMed]
  4. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
    [CrossRef] [PubMed]
  5. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987).
    [CrossRef] [PubMed]
  6. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12(3), 434–439 (1995).
    [CrossRef]
  7. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Optical solitary waves induced by cross-phase modulation,” Opt. Lett. 13(10), 871–873 (1988).
    [CrossRef] [PubMed]
  8. D. N. Christodoulides and R. I. Joseph, “Vector solitons in birefringent nonlinear dispersive media,” Opt. Lett. 13(1), 53–55 (1988).
    [CrossRef] [PubMed]
  9. Y. S. Kivshar and S. K. Turitsyn, “Vector dark solitons,” Opt. Lett. 18(5), 337–339 (1993).
    [CrossRef] [PubMed]
  10. M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19(2), 96–98 (1994).
    [CrossRef] [PubMed]
  11. S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
    [CrossRef]
  12. E. Seve, G. Millot, S. Wabnitz, T. Sylvestre, and H. Maillotte, “Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber,” J. Opt. Soc. Am. B 16(10), 1642–1650 (1999).
    [CrossRef]
  13. C. Milián, D. V. Skryabin, and A. Ferrando, “Continuum generation by dark solitons,” Opt. Lett. 34(14), 2096–2098 (2009).
    [CrossRef] [PubMed]
  14. Q. L. Williams and R. Roy, “Fast polarization dynamics of an erbium-doped fiber ring laser,” Opt. Lett. 21(18), 1478–1480 (1996).
    [CrossRef] [PubMed]
  15. B. Meziane, F. Sanchez, G. M. Stephan, and P. L. François, “Feedback-induced polarization switching in a Nd-doped fiber laser,” Opt. Lett. 19(23), 1970–1972 (1994).
    [CrossRef] [PubMed]
  16. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoltion formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [CrossRef]
  17. B. A. Malomed, “Optical domain walls,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(2), 1565–1571 (1994).
    [CrossRef] [PubMed]
  18. B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, “Domain boundaries in convection patterns,” Phys. Rev. A 42(12), 7244–7263 (1990).
    [CrossRef] [PubMed]
  19. B. A. Malomed, “Domain wall between traveling waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), R3310–R3313 (1994).
    [CrossRef] [PubMed]

2009 (2)

2005 (2)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoltion formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

D. Y. Tang, L. M. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
[CrossRef] [PubMed]

2001 (1)

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
[CrossRef]

1996 (1)

1995 (1)

1994 (4)

M. Haelterman and A. P. Sheppard, “Polarization domain walls in diffractive or dispersive Kerr media,” Opt. Lett. 19(2), 96–98 (1994).
[CrossRef] [PubMed]

B. Meziane, F. Sanchez, G. M. Stephan, and P. L. François, “Feedback-induced polarization switching in a Nd-doped fiber laser,” Opt. Lett. 19(23), 1970–1972 (1994).
[CrossRef] [PubMed]

B. A. Malomed, “Optical domain walls,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(2), 1565–1571 (1994).
[CrossRef] [PubMed]

B. A. Malomed, “Domain wall between traveling waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), R3310–R3313 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

1990 (1)

B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, “Domain boundaries in convection patterns,” Phys. Rev. A 42(12), 7244–7263 (1990).
[CrossRef] [PubMed]

1988 (2)

1987 (1)

Akhmediev, N.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[CrossRef] [PubMed]

Akhmediev, N. N.

Andersen, D. R.

Buryak, A. V.

Christodoulides, D. N.

Ferrando, A.

François, P. L.

Haelterman, M.

Iii, I. N.

Joseph, R. I.

Kivshar, Y. S.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoltion formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Maillotte, H.

Malomed, B. A.

B. A. Malomed, “Domain wall between traveling waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), R3310–R3313 (1994).
[CrossRef] [PubMed]

B. A. Malomed, “Optical domain walls,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(2), 1565–1571 (1994).
[CrossRef] [PubMed]

B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, “Domain boundaries in convection patterns,” Phys. Rev. A 42(12), 7244–7263 (1990).
[CrossRef] [PubMed]

Menyuk, C. R.

Meziane, B.

Milián, C.

Millot, G.

Nepomnyashchy, A. A.

B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, “Domain boundaries in convection patterns,” Phys. Rev. A 42(12), 7244–7263 (1990).
[CrossRef] [PubMed]

Pitois, S.

S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
[CrossRef]

Roy, R.

Sanchez, F.

Seve, E.

Sheppard, A. P.

Skryabin, D. V.

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[CrossRef] [PubMed]

N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, and D. R. Andersen, “Phase-locked stationary soliton states in birefringent nonlinear optical fibers,” J. Opt. Soc. Am. B 12(3), 434–439 (1995).
[CrossRef]

Stegeman, G. I.

Stephan, G. M.

Sylvestre, T.

Tam, H. Y.

Tang, D. Y.

Town, G.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[CrossRef] [PubMed]

Tribelsky, M. I.

B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, “Domain boundaries in convection patterns,” Phys. Rev. A 42(12), 7244–7263 (1990).
[CrossRef] [PubMed]

Trillo, S.

Turitsyn, S. K.

Wabnitz, S.

Williams, Q. L.

Wright, E. M.

Wu, X.

Zhang, H.

Zhao, B.

D. Y. Tang, L. M. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoltion formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Zhao, L. M.

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (9)

Phys. Rev. A (2)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoltion formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, “Domain boundaries in convection patterns,” Phys. Rev. A 42(12), 7244–7263 (1990).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (2)

B. A. Malomed, “Optical domain walls,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(2), 1565–1571 (1994).
[CrossRef] [PubMed]

B. A. Malomed, “Domain wall between traveling waves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50(5), R3310–R3313 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Pitois, G. Millot, and S. Wabnitz, “Polarization domain wall solitons with counterpropagating laser beams,” Phys. Rev. Lett. 81(7), 1409–1412 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup. EDF: Erbium doped fiber. WDM: wavelength division multiplexer. SMF: single mode fiber. PC: polarization controller. PBS: polarization beam splitter.

Fig. 2
Fig. 2

Duration variation of the square pulses versus the orientation angle of one of the paddles of the intra-cavity PC.

Fig. 3
Fig. 3

Vector dark polarization domain wall soliton emission of the laser. (a) Polarization resolved oscilloscope trace: horizontal axis (upper trace) and vertical axis (lower trace). (b) Total laser emission (upper trace) and one of the polarized laser emissions (lower trace). (c) The corresponding optical spectra.

Fig. 4
Fig. 4

Polarization domain wall numerically calculated. Evolution of the polarization domain wall with the cavity roundtrips: (a) Horizontal polarization, (b) Vertical axis, (c) Domain wall profiles at particular roundtrip, (d) The vector domain wall soliton and its ellipticity degree at particular roundtrip.

Metrics