Abstract

We propose and demonstrate guided mode conversion by an optically induced long-period fiber grating (OLPG). The beating of two guided modes excited by a nanosecond pulsed laser beam is used to induce a refractive index grating via the Kerr effect. This grating converts a counter-propagating continuous-wave beam from the LP01 to the LP11 mode. Numerical simulations using a beam propagation method show that a full conversion is possible. Experimentally, a mode conversion with an efficiency of about 50% is firstly demonstrated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21(9), 692-694 (1996).
    [CrossRef] [PubMed]
  3. H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
    [CrossRef]
  4. S. Ramachandran, "Dispersion-Tailored Few-Mode Fibers: A Versatile Platform for In-Fiber Photonic Devices," J. Lightwave Technol. 23(11), 3426 (2005).
    [CrossRef]
  5. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, "Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation," Opt. Lett. 32(16), 2372-2374 (2007).
    [CrossRef] [PubMed]
  6. B. Malo, K. A. Vineberg, F. Bilodeau, J. Albert, D. C. Johnson, and K. O. Hill, "Ultraviolet light photosensitivity in Ge-doped silica fibers: wavelength dependence of the light-induced index change," Opt. Lett. 15(17), 953-955 (1990).
    [CrossRef] [PubMed]
  7. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24(10), 646-648 (1999).
    [CrossRef]
  8. S. Savin, M. F. Digonnet, G. S. Kino, and H. J. Shaw, "Tunable mechanically induced long-period fiber gratings," Opt. Lett. 25(10), 710-712 (2000).
    [CrossRef]
  9. K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, "Axial strain dependence of all-fiber acousto-optic tunable filters," Opt. Express 17(4), 2348-2357 (2009).
    [CrossRef] [PubMed]
  10. M. Kulishov, P. Cheben, X. Daxhelet, and S. Delprat, "Electro-optically induced tilted phase gratings in waveguides," J. Opt. Soc. Am. B 18(4), 457-464 (2001).
    [CrossRef]
  11. D. Yevick, "A guide to electric field propagation techniques for guided-wave optics," Opt. Quantum Electron. 16(3), 185-197 (1994).
    [CrossRef]
  12. N. Andermahr and C. Fallnich, "Modeling of transverse mode interaction in large-mode-area fiber amplifiers," Opt. Express 16(24), 20,038-20,046 (2008).
    [CrossRef]
  13. N. Andermahr and C. Fallnich, "Interaction of transverse modes in a single-frequency few-mode fiber amplifier caused by local gain saturation," Opt. Express 16(12), 8678-8684 (2008).
    [CrossRef] [PubMed]
  14. M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin scattering in fibers with and without external feedback," Phys. Rev. A 48(4), 3301-3309 (1993).
    [CrossRef] [PubMed]
  15. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, "Laser beam quality and pointing measurement with an optical resonator," Rev. Sci. Instrum. 78(7), 073103 (2007).
    [CrossRef] [PubMed]

2009 (1)

2008 (3)

N. Andermahr and C. Fallnich, "Interaction of transverse modes in a single-frequency few-mode fiber amplifier caused by local gain saturation," Opt. Express 16(12), 8678-8684 (2008).
[CrossRef] [PubMed]

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

N. Andermahr and C. Fallnich, "Modeling of transverse mode interaction in large-mode-area fiber amplifiers," Opt. Express 16(24), 20,038-20,046 (2008).
[CrossRef]

2007 (2)

2005 (1)

2001 (1)

2000 (1)

1999 (1)

1996 (1)

1994 (1)

D. Yevick, "A guide to electric field propagation techniques for guided-wave optics," Opt. Quantum Electron. 16(3), 185-197 (1994).
[CrossRef]

1993 (1)

M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin scattering in fibers with and without external feedback," Phys. Rev. A 48(4), 3301-3309 (1993).
[CrossRef] [PubMed]

1990 (2)

B. Malo, K. A. Vineberg, F. Bilodeau, J. Albert, D. C. Johnson, and K. O. Hill, "Ultraviolet light photosensitivity in Ge-doped silica fibers: wavelength dependence of the light-induced index change," Opt. Lett. 15(17), 953-955 (1990).
[CrossRef] [PubMed]

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
[CrossRef]

Albert, J.

Andermahr, N.

N. Andermahr and C. Fallnich, "Interaction of transverse modes in a single-frequency few-mode fiber amplifier caused by local gain saturation," Opt. Express 16(12), 8678-8684 (2008).
[CrossRef] [PubMed]

N. Andermahr and C. Fallnich, "Modeling of transverse mode interaction in large-mode-area fiber amplifiers," Opt. Express 16(24), 20,038-20,046 (2008).
[CrossRef]

Bhatia, V.

Bilodeau, F.

B. Malo, K. A. Vineberg, F. Bilodeau, J. Albert, D. C. Johnson, and K. O. Hill, "Ultraviolet light photosensitivity in Ge-doped silica fibers: wavelength dependence of the light-induced index change," Opt. Lett. 15(17), 953-955 (1990).
[CrossRef] [PubMed]

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
[CrossRef]

Cheben, P.

Dämmig, M.

M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin scattering in fibers with and without external feedback," Phys. Rev. A 48(4), 3301-3309 (1993).
[CrossRef] [PubMed]

Danzmann, K.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, "Laser beam quality and pointing measurement with an optical resonator," Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef] [PubMed]

Daxhelet, X.

de Sterke, C. M.

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

Delprat, S.

Digonnet, M. F.

Eggleton, B. J.

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

Fallnich, C.

N. Andermahr and C. Fallnich, "Interaction of transverse modes in a single-frequency few-mode fiber amplifier caused by local gain saturation," Opt. Express 16(12), 8678-8684 (2008).
[CrossRef] [PubMed]

N. Andermahr and C. Fallnich, "Modeling of transverse mode interaction in large-mode-area fiber amplifiers," Opt. Express 16(24), 20,038-20,046 (2008).
[CrossRef]

Fu, L. B.

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

Ghalmi, S.

Hill, K.

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
[CrossRef]

Hill, K. O.

Hirao, K.

Hwang, I.-K.

Johnson, D.

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
[CrossRef]

Johnson, D. C.

Kazansky, P. G.

Kim, B. Y.

Kino, G. S.

Kondo, Y.

Kracht, D.

Kuhlmey, B. T.

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

Kulishov, M.

Kwee, P.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, "Laser beam quality and pointing measurement with an optical resonator," Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef] [PubMed]

Lee, K. J.

Mägi, E. C.

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

Malo, B.

B. Malo, K. A. Vineberg, F. Bilodeau, J. Albert, D. C. Johnson, and K. O. Hill, "Ultraviolet light photosensitivity in Ge-doped silica fibers: wavelength dependence of the light-induced index change," Opt. Lett. 15(17), 953-955 (1990).
[CrossRef] [PubMed]

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
[CrossRef]

Mitschke, F.

M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin scattering in fibers with and without external feedback," Phys. Rev. A 48(4), 3301-3309 (1993).
[CrossRef] [PubMed]

Mitsuyu, T.

Nguyen, H. C.

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

Nouchi, K.

Park, H. C.

Prochnow, O.

Ramachandran, S.

Ruehl, A.

Savin, S.

Schultz, M.

Seifert, F.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, "Laser beam quality and pointing measurement with an optical resonator," Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef] [PubMed]

Shaw, H. J.

Skinner, I.

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
[CrossRef]

Vengsarkar, A. M.

Vineberg, K.

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
[CrossRef]

Vineberg, K. A.

Wandt, D.

Watanabe, M.

Welling, H.

M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin scattering in fibers with and without external feedback," Phys. Rev. A 48(4), 3301-3309 (1993).
[CrossRef] [PubMed]

Willke, B.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, "Laser beam quality and pointing measurement with an optical resonator," Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef] [PubMed]

Yeom, D.-I.

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

Yevick, D.

D. Yevick, "A guide to electric field propagation techniques for guided-wave optics," Opt. Quantum Electron. 16(3), 185-197 (1994).
[CrossRef]

Zinner, G.

M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin scattering in fibers with and without external feedback," Phys. Rev. A 48(4), 3301-3309 (1993).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

H. C. Nguyen, D.-I. Yeom, E. C. Mägi, L. B. Fu, B. T. Kuhlmey, C. M. de Sterke, and B. J. Eggleton, "Nonlinear long-period gratings in As2Se3 chalcogenide fiber for all-optical switching," Appl. Phys. Lett. 92(10), 101127 (2008).
[CrossRef]

Electron. Lett. (1)

K. Hill, B. Malo, K. Vineberg, F. Bilodeau, D. Johnson, and I. Skinner, "Efficient mode conversion in telecommunication fibre using externally written gratings," Electron. Lett. 26(16), 1270-1272 (1990).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

D. Yevick, "A guide to electric field propagation techniques for guided-wave optics," Opt. Quantum Electron. 16(3), 185-197 (1994).
[CrossRef]

Phys. Rev. A (1)

M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin scattering in fibers with and without external feedback," Phys. Rev. A 48(4), 3301-3309 (1993).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, "Laser beam quality and pointing measurement with an optical resonator," Rev. Sci. Instrum. 78(7), 073103 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup: The pulsed laser induces a grating that diffracts the counter-propagating continuous-wave (cw) laser beam. NPBS/PBS: non-/polarizing beam splitter, SMF: single-mode fiber, PD: photodiode.

Fig. 2.
Fig. 2.

Numerical simulation of the OLPG: (a) Refractive index change induced in the fiber by the mode beating of a 200kW quasi-cw beam, (b) intensity of the probe beam that is propagated through the fiber with modified refractive index, and (c) normalized modal power of cw beam, the fundamental mode (LP01) is converted to the LP11 mode.

Fig. 3.
Fig. 3.

(a-h) Power of the probe beam behind the SMF for different pulse energies, (i) dip minimum over pulse energy with a third-order fit, and the calculated decrease of the fundamental mode in dependence on the pulse energy.

Fig. 4.
Fig. 4.

Spatial dependence of the converted beam: Calculated intensity profiles of (a) the fundamental mode and (b) a superposition of LP01 and LP11 with equal powers; (c) calculated transmission scanning a SMF across (i) the fundamental mode and across (ii) the mode superposition; (d) measured transmission of the converted and unconverted probe beam across the position over the SMF (lines are third-order polynomial fits to guide the eye); (e) analogous to (d) after a horizontally shifted incoupling of the writing beam.

Metrics