Abstract

We present cw and mode-locked laser operations on the base of partially disordered crystalline Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramics. In continuous-wave laser operations, the average power of 2.9 W at the wavelength of 1051 nm and 2.8 W at the wavelength of 1031 nm with above 40% optical-to-optical efficiencies were achieved. In mode-locked laser operation, pulses as short as 69 fs with the average power of 820 mW was also obtained.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
    [CrossRef]
  2. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
    [CrossRef]
  3. A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
  4. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
    [CrossRef] [PubMed]
  5. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-Amplifier,” Opt. Express 17(15), 12230–12245 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12230 .
    [CrossRef] [PubMed]
  6. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
    [CrossRef]
  7. H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
    [CrossRef]
  8. F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009).
    [CrossRef] [PubMed]
  9. A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).
  10. S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539 .
    [CrossRef] [PubMed]
  11. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
    [CrossRef] [PubMed]
  12. J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007).
    [CrossRef] [PubMed]
  13. P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
    [CrossRef] [PubMed]
  14. C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
    [CrossRef]
  15. A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
    [CrossRef]
  16. A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
    [CrossRef]
  17. O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kouznetsov, A. N. Nakladov, V. V. Osiko, H. Jelinkova, and J. Šulc, “Spectroscopic and Oscillation Properties of Yb3+Ions in BaF2-SrF2-CaF2Crystals and Ceramics,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB25.
  18. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
    [CrossRef] [PubMed]
  19. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
    [CrossRef] [PubMed]
  20. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
    [CrossRef] [PubMed]
  21. A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
    [CrossRef]
  22. E. Sorokin, M. H. Ober, I. Sorokina, E. Wintner, A. J. Schmidt, A. I. Zagumennyi, G. B. Loutts, E. W. Zharikov, and I. A. Shcherbakov, “Femtosecond solid-state lasers using Nd3+-doped mixed scandium garnets,” J. Opt. Soc. Am. B 10(8), 1436–1442 (1993).
    [CrossRef]
  23. K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
    [CrossRef]
  24. M. J. Lederer, B. Luther-Davies, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16(6), 895–904 (1999).
    [CrossRef]

2009 (4)

2008 (2)

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

2007 (6)

2006 (2)

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

2005 (1)

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

2004 (4)

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[CrossRef] [PubMed]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

2001 (1)

2000 (1)

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

1999 (1)

1993 (1)

Ackermann, L.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Akchurin, M.

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Akchurin, M. Sh.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Akhmediev, N. N.

Arisholm, G.

Bagaev, S. N.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Baina, F.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Becker, P.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Benayad, A.

Bisson, J. F.

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Bohatý, L.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Boudeile, J.

Browna, C. T. A.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Brunner, F.

Camy, P.

Cascales, C.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Cormier, E.

Dong, J.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Doualan, J. L.

Druon, F.

Dupré, C.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Erbert, G.

Esteban-Betegón, F.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Gainutdinov, R.

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Georges, P.

Giesen, A.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).

Goldner, P.

Griebner, U.

Hanna, M.

Hoffmann, H. D.

Hosokawa, S.

Huber, G.

S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539 .
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Ikesue, A.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Innerhofer, E.

Ito, H.

Jacquemet, M.

Jagadish, C.

Kaminskii, A. A.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
[CrossRef]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Keller, U.

Kisel, V. E.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Kitamura, K.

Klehr, A.

Klopp, P.

Kränkel, C.

Krupke, W. F.

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

Kuleshovb, N. V.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Kurimura, S.

Lagatsky, A. A.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Lederer, M. J.

Liu, H.

Liu, J.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Loutts, G. B.

Lu, J.

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Luther-Davies, B.

Mans, T.

Marchese, S. V.

Ménard, V.

Moncorgé, R.

Mourou, G.

Nees, J.

Noriyuki, M.

Ober, M. H.

Papadopoulos, D. N.

Paschotta, R.

Pelenc, D.

Petermann, K.

Peters, R.

S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, “Ultrashort pulse Yb:LaSc3(BO3)4 mode-locked oscillator,” Opt. Express 15(23), 15539–15544 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15539 .
[CrossRef] [PubMed]

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Peters, V.

Petit, J.

Petrov, V.

Poprawe, R.

Rhee, H.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Rico, M.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Rivier, S.

Rotarius, G.

Russbueldt, P.

Rytz, D.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Saikawa, J.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Sato, Y.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Schmidt, A.

Schmidt, A. J.

Serrano, M. D.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Shcherbakov, I. A.

Shirakawa, A.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Sibbetta, W.

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Sorokin, E.

Sorokina, I.

Soto-Crespo, J. M.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).

Südmeyer, T.

Taira, T.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

Takaichi, K.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Takurakawa, M.

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

Tan, H. H.

Thibault, F.

Tokurakawa, M.

Ueda, K.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Usami, T.

Viana, B.

Weitenberg, J.

Weyers, M.

Wintner, E.

Yagi, H.

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Yanagitani, T.

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator,” Opt. Express 17(5), 3353–3361 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3353 .
[CrossRef] [PubMed]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Zagumennyi, A. I.

Zaldo, C.

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Zaouter, Y.

Zharikov, E. W.

Zorn, M.

Appl. Phys. Lett. (2)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser,” Appl. Phys. Lett. 85(24), 5845 (2004).
[CrossRef]

K. Takaichi, H. Yagi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers,” Appl. Phys. Lett. 84(3), 317–319 (2004).
[CrossRef]

Crystallogr. Rep. (1)

A. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microharness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

W. F. Krupke, “Ytterbium solid-state lasers-the first decade,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1287–1296 (2000).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photon. Rev. 1(2), 93–177 (2007).
[CrossRef]

Laser Phys. Lett. (2)

A. A. Kaminskii, M. Sh. Akchurin, P. Becker, K. Ueda, L. Bohatý, A. Shirakawa, M. Takurakawa, K. Takaichi, H. Yagi, J. Dong, and T. Yanagitani, “Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants,” Laser Phys. Lett. 5(4), 300–303 (2008).
[CrossRef]

A. A. Kaminskii, S. N. Bagaev, K. Ueda, H. Yagi, H. J. Eichler, A. Shirakawa, M. Tokurakawa, H. Rhee, K. Takaichi, and T. Yanagitani, “Nonlinear-laser χ(3)-effects in novel garnet-type fine-grained ceramic-host {YGd2}[Sc2](Al2Ga)O12 for Ln3+ lasants,” Laser Phys. Lett. 6(9), 671–677 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (8)

F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
[CrossRef] [PubMed]

J. Boudeile, F. Druon, M. Hanna, P. Georges, Y. Zaouter, E. Cormier, J. Petit, P. Goldner, and B. Viana, “Continuous-wave and femtosecond laser operation of Yb:CaGdAlO4 under high-power diode pumping,” Opt. Lett. 32(14), 1962–1964 (2007).
[CrossRef] [PubMed]

P. Klopp, V. Petrov, U. Griebner, K. Petermann, V. Peters, and G. Erbert, “Highly efficient mode-locked Yb:Sc2O3 laser,” Opt. Lett. 29(4), 391–393 (2004).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser,” Opt. Lett. 32(23), 3382–3384 (2007).
[CrossRef] [PubMed]

M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
[CrossRef] [PubMed]

F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett. 29(16), 1921–1923 (2004).
[CrossRef] [PubMed]

H. Liu, J. Nees, and G. Mourou, “Diode-pumped Kerr-lens mode-locked Yb:KY(WO4)2 laser,” Opt. Lett. 26(21), 1723–1725 (2001).
[CrossRef]

F. Druon, D. N. Papadopoulos, J. Boudeile, M. Hanna, P. Georges, A. Benayad, P. Camy, J. L. Doualan, V. Ménard, and R. Moncorgé, “Mode-locked operation of a diode-pumped femtosecond Yb:SrF2 laser,” Opt. Lett. 34(15), 2354–2356 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (1)

C. Cascales, M. D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, and V. Petrov, “Structural, spectroscopic, and tunable laser properties of Yb3+-doped Yb:NaGd(WO4)2,” Phys. Rev. B 74(17), 174114 (2006).
[CrossRef]

Proc. SPIE (1)

A. A. Lagatsky, V. E. Kisel, F. Baina, C. T. A. Browna, N. V. Kuleshovb, and W. Sibbetta, “Advances in femtosecond lasers having enhanced efficiencies,” Proc. SPIE 6731, 673103 (2007).

Other (1)

O. K. Alimov, T. T. Basiev, M. E. Doroshenko, P. P. Fedorov, V. A. Konyushkin, S. V. Kouznetsov, A. N. Nakladov, V. V. Osiko, H. Jelinkova, and J. Šulc, “Spectroscopic and Oscillation Properties of Yb3+Ions in BaF2-SrF2-CaF2Crystals and Ceramics,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WB25.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Absorption spectrum (2F7/22F5/2 inter manifold transition) of Yb3+:{YGd2}[Sc2](Al2Ga)O12 (CYb=10 at.%, 2.2 mm thick plate) and (b) luminescence (2F5/22F7/2) spectrum of Yb3{YGd2}[Sc2](Al2Ga)O12 (CYb=1.9at.%, powder) are shown

Fig. 2
Fig. 2

Schematic diagram of the experimental setup of Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic laser. The solid and dashed lines indicate mode-locked and cw operation, respectively. The inset shows the pulse train in the mode-locked operation.

Fig. 3
Fig. 3

Output power versus incident pump power in the Yb3+:{YGd2}[Sc2](Al2Ga)O12 ceramic lasers. Continuous-wave operation at 1051 nm wavelength (circle points) and at 1031 nm (square points) as well as mode-locked operation (triangle points: before mode locking, inverse triangle points: after mode locking (86 fs)) are shown.

Fig. 4
Fig. 4

(a) Autocorrelation trace with sech2 fitting and (b) spectrum of 69 fs pulses at the 820 mW average power.

Fig. 5
Fig. 5

Mode profiles of the laser beam outputs. (a) Before mode locking with the laser mode diameters of about 3100 × 2150 µm2 (tangential × sagittal) and (b) after the mode locking with the laser mode diameters of about 1900 × 1700 µm2.

Fig. 6
Fig. 6

Spectra of mode-locked lasing pulses with several pulse durations. The center wavelength shifted with pulse shortening (spectral broadening).

Metrics