Abstract

We present first damage threshold investigations on EUV mirrors and substrate materials using a table-top laser produced plasma source. A Schwarzschild objective with Mo/Si multilayer coatings for the wavelength of 13.5 nm was adapted to the source, generating an EUV spot of 5 µm diameter with a maximum energy density of ~6.6 J/cm2. Single-pulse damage tests were performed on grazing incidence gold mirrors, Mo/Si multilayer mirrors and mirror substrates, respectively. For gold mirrors, a film thickness dependent damage threshold is observed, which can be partially explained by a thermal interaction process. For Mo/Si multilayer mirrors two damage regimes (spot-like, crater) were identified. Fused silica exhibits very smooth ablation craters, indicating a direct photon-induced bond breaking process. Silicon shows the highest damage threshold of all investigated substrate and coating materials. The damage experiments on substrates (fused silica, silicon, CaF2) were compared to excimer laser ablation studies at 157 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Proceedings of SPIE, Boulder Damage Symposium (1996–2009).
  2. W. Banqiu and K. Ajay, “Extreme ultraviolet lithography: A review,” J. Vac. Sci. Technol. B 25(6), 1743–1761 (2007).
    [CrossRef]
  3. D. Hiroyuki, “Review of soft x-ray laser researches and developments,” Rep. Prog. Phys. 65(10), 1513–1576 (2002).
    [CrossRef]
  4. J. R. Schneider, “Properties and scientific perspectives of a single pass X-ray free-electron laser”, Nucl. Instr. and Meth. in Phys Res. A 398(1), 41–53 (1997).
    [CrossRef]
  5. F. Barkusky, C. Peth, A. Bayer, and K. Mann, “Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source,” J. Appl. Phys. 101(12), 124908 (2007).
    [CrossRef]
  6. F. Barkusky, A. Bayer, C. Peth, and K. Mann, “Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source,” J. Appl. Phys. 105, 014906 (2009).
    [CrossRef]
  7. S. Kranzusch and K. Mann, “Spectral characterization of EUV radiation emitted from a laser-irradiated gas puff target,” Opt. Commun. 200, 223 (2001).
    [CrossRef]
  8. C. Peth, S. Kranzusch, K. Mann, and W. Viöl, “Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor,” Rev. Sci. Instrum. 75(10), 3288 (2004).
    [CrossRef]
  9. S. Kranzusch, C. Peth, and K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74(2), 969 (2003).
    [CrossRef]
  10. F. Barkusky, C. Peth, K. Mann, T. Feigl, and N. Kaiser, “Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective,” Rev. Sci. Instrum. 76, 105102 (2005).
    [CrossRef]
  11. Center for X-Ray Optics, Berkeley Lab, Homepage, “ http://www-cxro.lbl.gov/
  12. A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
    [CrossRef]
  13. International Organization for Standardization, “Lasers and laser-related equipment – Determination of laser-induced damage threshold of optical surfaces – Part 1: 1 on 1 test“, ISO 11254-1.
  14. R. C. Spitzer, R. L. Kauffman, T. Orzechowski, D. W. Phillion, and C. Cerjan, “Soft x-ray production from laser produced plasmas for lithography applications,” J. Vac. Sci. Technol. B 11(6), 2986–2989 (1993).
    [CrossRef]
  15. E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
    [CrossRef]
  16. E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
    [CrossRef]
  17. B. Schäfer, J. Gloger, U. Leinhos, and K. Mann, “Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics,” Opt. Express 17(25), 23025–23036 (2009).
    [CrossRef]
  18. P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
    [CrossRef]
  19. J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys: Conference Series 59, 206–209 (2007).
    [CrossRef]
  20. K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
    [CrossRef]
  21. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, ISBN 0–521–02997-X).
  22. T. Makimura, Y. Kenmotsu, H. Miyamoto, H. Niino, and K. Murakami, “Ablation of silica glass using pulsed laser plasma soft X-rays,” Surf. Sci. 593(1-3), 248–251 (2005).
    [CrossRef]
  23. J. Albers, “Grundlagen integrierter Schaltungen”, Hanser Fachbuchverlag, ISBN: 3-446-40686-7 (2007).

2009 (4)

F. Barkusky, A. Bayer, C. Peth, and K. Mann, “Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source,” J. Appl. Phys. 105, 014906 (2009).
[CrossRef]

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

B. Schäfer, J. Gloger, U. Leinhos, and K. Mann, “Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics,” Opt. Express 17(25), 23025–23036 (2009).
[CrossRef]

2007 (3)

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys: Conference Series 59, 206–209 (2007).
[CrossRef]

W. Banqiu and K. Ajay, “Extreme ultraviolet lithography: A review,” J. Vac. Sci. Technol. B 25(6), 1743–1761 (2007).
[CrossRef]

F. Barkusky, C. Peth, A. Bayer, and K. Mann, “Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source,” J. Appl. Phys. 101(12), 124908 (2007).
[CrossRef]

2005 (2)

F. Barkusky, C. Peth, K. Mann, T. Feigl, and N. Kaiser, “Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective,” Rev. Sci. Instrum. 76, 105102 (2005).
[CrossRef]

T. Makimura, Y. Kenmotsu, H. Miyamoto, H. Niino, and K. Murakami, “Ablation of silica glass using pulsed laser plasma soft X-rays,” Surf. Sci. 593(1-3), 248–251 (2005).
[CrossRef]

2004 (1)

C. Peth, S. Kranzusch, K. Mann, and W. Viöl, “Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor,” Rev. Sci. Instrum. 75(10), 3288 (2004).
[CrossRef]

2003 (1)

S. Kranzusch, C. Peth, and K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74(2), 969 (2003).
[CrossRef]

2002 (1)

D. Hiroyuki, “Review of soft x-ray laser researches and developments,” Rep. Prog. Phys. 65(10), 1513–1576 (2002).
[CrossRef]

2001 (1)

S. Kranzusch and K. Mann, “Spectral characterization of EUV radiation emitted from a laser-irradiated gas puff target,” Opt. Commun. 200, 223 (2001).
[CrossRef]

2000 (1)

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
[CrossRef]

1997 (1)

J. R. Schneider, “Properties and scientific perspectives of a single pass X-ray free-electron laser”, Nucl. Instr. and Meth. in Phys Res. A 398(1), 41–53 (1997).
[CrossRef]

1996 (1)

K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
[CrossRef]

1994 (1)

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

1993 (1)

R. C. Spitzer, R. L. Kauffman, T. Orzechowski, D. W. Phillion, and C. Cerjan, “Soft x-ray production from laser produced plasmas for lithography applications,” J. Vac. Sci. Technol. B 11(6), 2986–2989 (1993).
[CrossRef]

Ajay, K.

W. Banqiu and K. Ajay, “Extreme ultraviolet lithography: A review,” J. Vac. Sci. Technol. B 25(6), 1743–1761 (2007).
[CrossRef]

Banqiu, W.

W. Banqiu and K. Ajay, “Extreme ultraviolet lithography: A review,” J. Vac. Sci. Technol. B 25(6), 1743–1761 (2007).
[CrossRef]

Barkusky, F.

F. Barkusky, A. Bayer, C. Peth, and K. Mann, “Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source,” J. Appl. Phys. 105, 014906 (2009).
[CrossRef]

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

F. Barkusky, C. Peth, A. Bayer, and K. Mann, “Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source,” J. Appl. Phys. 101(12), 124908 (2007).
[CrossRef]

F. Barkusky, C. Peth, K. Mann, T. Feigl, and N. Kaiser, “Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective,” Rev. Sci. Instrum. 76, 105102 (2005).
[CrossRef]

Bayer, A.

F. Barkusky, A. Bayer, C. Peth, and K. Mann, “Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source,” J. Appl. Phys. 105, 014906 (2009).
[CrossRef]

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

F. Barkusky, C. Peth, A. Bayer, and K. Mann, “Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source,” J. Appl. Phys. 101(12), 124908 (2007).
[CrossRef]

Bijkerk, F.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Bizenberger, P.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Cerjan, C.

R. C. Spitzer, R. L. Kauffman, T. Orzechowski, D. W. Phillion, and C. Cerjan, “Soft x-ray production from laser produced plasmas for lithography applications,” J. Vac. Sci. Technol. B 11(6), 2986–2989 (1993).
[CrossRef]

Chalupsky, J.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Chen, K.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
[CrossRef]

Cihelka, J.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Dette, J.-O.

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

Döring, S.

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

Feigl, T.

F. Barkusky, C. Peth, K. Mann, T. Feigl, and N. Kaiser, “Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective,” Rev. Sci. Instrum. 76, 105102 (2005).
[CrossRef]

Flöter, B.

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

Fricke-Begemann, T.

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys: Conference Series 59, 206–209 (2007).
[CrossRef]

Gaudin, J.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Gloger, J.

Gullikson, E. M.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Hajkova, V.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Herman, P. R.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
[CrossRef]

Hiroyuki, D.

D. Hiroyuki, “Review of soft x-ray laser researches and developments,” Rep. Prog. Phys. 65(10), 1513–1576 (2002).
[CrossRef]

Ihlemann, J.

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys: Conference Series 59, 206–209 (2007).
[CrossRef]

Jastrow, U.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Juha, L.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Jurek, M.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Käding, O. W.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Kaiser, N.

F. Barkusky, C. Peth, K. Mann, T. Feigl, and N. Kaiser, “Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective,” Rev. Sci. Instrum. 76, 105102 (2005).
[CrossRef]

Kauffman, R. L.

R. C. Spitzer, R. L. Kauffman, T. Orzechowski, D. W. Phillion, and C. Cerjan, “Soft x-ray production from laser produced plasmas for lithography applications,” J. Vac. Sci. Technol. B 11(6), 2986–2989 (1993).
[CrossRef]

Kenmotsu, Y.

T. Makimura, Y. Kenmotsu, H. Miyamoto, H. Niino, and K. Murakami, “Ablation of silica glass using pulsed laser plasma soft X-rays,” Surf. Sci. 593(1-3), 248–251 (2005).
[CrossRef]

Khorsand, A. R.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Klinger, D.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Konovalov, I.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
[CrossRef]

Kranzusch, S.

C. Peth, S. Kranzusch, K. Mann, and W. Viöl, “Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor,” Rev. Sci. Instrum. 75(10), 3288 (2004).
[CrossRef]

S. Kranzusch, C. Peth, and K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74(2), 969 (2003).
[CrossRef]

S. Kranzusch and K. Mann, “Spectral characterization of EUV radiation emitted from a laser-irradiated gas puff target,” Opt. Commun. 200, 223 (2001).
[CrossRef]

Leinhos, U.

Louis, E.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Makimura, T.

T. Makimura, Y. Kenmotsu, H. Miyamoto, H. Niino, and K. Murakami, “Ablation of silica glass using pulsed laser plasma soft X-rays,” Surf. Sci. 593(1-3), 248–251 (2005).
[CrossRef]

Mann, K.

B. Schäfer, J. Gloger, U. Leinhos, and K. Mann, “Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics,” Opt. Express 17(25), 23025–23036 (2009).
[CrossRef]

F. Barkusky, A. Bayer, C. Peth, and K. Mann, “Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source,” J. Appl. Phys. 105, 014906 (2009).
[CrossRef]

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

F. Barkusky, C. Peth, A. Bayer, and K. Mann, “Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source,” J. Appl. Phys. 101(12), 124908 (2007).
[CrossRef]

F. Barkusky, C. Peth, K. Mann, T. Feigl, and N. Kaiser, “Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective,” Rev. Sci. Instrum. 76, 105102 (2005).
[CrossRef]

C. Peth, S. Kranzusch, K. Mann, and W. Viöl, “Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor,” Rev. Sci. Instrum. 75(10), 3288 (2004).
[CrossRef]

S. Kranzusch, C. Peth, and K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74(2), 969 (2003).
[CrossRef]

S. Kranzusch and K. Mann, “Spectral characterization of EUV radiation emitted from a laser-irradiated gas puff target,” Opt. Commun. 200, 223 (2001).
[CrossRef]

Marjoribanks, R. S.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
[CrossRef]

Matthias, E.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Miyamoto, H.

T. Makimura, Y. Kenmotsu, H. Miyamoto, H. Niino, and K. Murakami, “Ablation of silica glass using pulsed laser plasma soft X-rays,” Surf. Sci. 593(1-3), 248–251 (2005).
[CrossRef]

Murakami, K.

T. Makimura, Y. Kenmotsu, H. Miyamoto, H. Niino, and K. Murakami, “Ablation of silica glass using pulsed laser plasma soft X-rays,” Surf. Sci. 593(1-3), 248–251 (2005).
[CrossRef]

Nakamura, A.

K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
[CrossRef]

Neske, E.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Ness, S.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
[CrossRef]

Niino, H.

T. Makimura, Y. Kenmotsu, H. Miyamoto, H. Niino, and K. Murakami, “Ablation of silica glass using pulsed laser plasma soft X-rays,” Surf. Sci. 593(1-3), 248–251 (2005).
[CrossRef]

Oettl, A.

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
[CrossRef]

Ohnuma, Y.

K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
[CrossRef]

Orzechowski, T.

R. C. Spitzer, R. L. Kauffman, T. Orzechowski, D. W. Phillion, and C. Cerjan, “Soft x-ray production from laser produced plasmas for lithography applications,” J. Vac. Sci. Technol. B 11(6), 2986–2989 (1993).
[CrossRef]

Pelka, J. B.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Peth, C.

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

F. Barkusky, A. Bayer, C. Peth, and K. Mann, “Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source,” J. Appl. Phys. 105, 014906 (2009).
[CrossRef]

F. Barkusky, C. Peth, A. Bayer, and K. Mann, “Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source,” J. Appl. Phys. 101(12), 124908 (2007).
[CrossRef]

F. Barkusky, C. Peth, K. Mann, T. Feigl, and N. Kaiser, “Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective,” Rev. Sci. Instrum. 76, 105102 (2005).
[CrossRef]

C. Peth, S. Kranzusch, K. Mann, and W. Viöl, “Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor,” Rev. Sci. Instrum. 75(10), 3288 (2004).
[CrossRef]

S. Kranzusch, C. Peth, and K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74(2), 969 (2003).
[CrossRef]

Petzoldt, S.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Phillion, D. W.

R. C. Spitzer, R. L. Kauffman, T. Orzechowski, D. W. Phillion, and C. Cerjan, “Soft x-ray production from laser produced plasmas for lithography applications,” J. Vac. Sci. Technol. B 11(6), 2986–2989 (1993).
[CrossRef]

Reichling, M.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Schäfer, B.

Schneider, J. R.

J. R. Schneider, “Properties and scientific perspectives of a single pass X-ray free-electron laser”, Nucl. Instr. and Meth. in Phys Res. A 398(1), 41–53 (1997).
[CrossRef]

Schulz-Ruhtenberg, M.

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys: Conference Series 59, 206–209 (2007).
[CrossRef]

Siegel, J.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Skurk, H.

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Sobierajski, R.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Spitzer, R. C.

R. C. Spitzer, R. L. Kauffman, T. Orzechowski, D. W. Phillion, and C. Cerjan, “Soft x-ray production from laser produced plasmas for lithography applications,” J. Vac. Sci. Technol. B 11(6), 2986–2989 (1993).
[CrossRef]

Sugioka, K.

K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
[CrossRef]

Tashiro, H.

K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
[CrossRef]

Tiedtke, K. I.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Toleikis, S.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Toyoda, K.

K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
[CrossRef]

van Hattum, E. D.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Viöl, W.

C. Peth, S. Kranzusch, K. Mann, and W. Viöl, “Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor,” Rev. Sci. Instrum. 75(10), 3288 (2004).
[CrossRef]

Wabnitz, H.

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Wada, S.

K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

E. Matthias, M. Reichling, J. Siegel, O. W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, and E. Neske, “The Influence of Thermal Diffusion on Laser Ablation of Metal Films,” Appl. Phys., A Mater. Sci. Process. 58, 129–136 (1994).
[CrossRef]

Appl. Surf. Sci. (2)

P. R. Herman, R. S. Marjoribanks, A. Oettl, K. Chen, I. Konovalov, and S. Ness, “Laser shaping of photonic materials: deep-ultraviolet and ultrafast lasers,” Appl. Surf. Sci. 154–155(1-4), 577–586 (2000).
[CrossRef]

K. Sugioka, S. Wada, Y. Ohnuma, A. Nakamura, H. Tashiro, and K. Toyoda, “Multiwavelength irradiation effect in fused quartz ablation using vacuum-ultraviolet Raman laser,” Appl. Surf. Sci. 96–98, 347–351 (1996).
[CrossRef]

J. Appl. Phys. (2)

F. Barkusky, C. Peth, A. Bayer, and K. Mann, “Direct photo-etching of poly(methyl methacrylate) using focused extreme ultraviolet radiation from a table-top laser-induced plasma source,” J. Appl. Phys. 101(12), 124908 (2007).
[CrossRef]

F. Barkusky, A. Bayer, C. Peth, and K. Mann, “Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source,” J. Appl. Phys. 105, 014906 (2009).
[CrossRef]

J. Phys: Conference Series (1)

J. Ihlemann, M. Schulz-Ruhtenberg, and T. Fricke-Begemann, “Micro patterning of fused silica by ArF- and F2-laser ablation,” J. Phys: Conference Series 59, 206–209 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (2)

W. Banqiu and K. Ajay, “Extreme ultraviolet lithography: A review,” J. Vac. Sci. Technol. B 25(6), 1743–1761 (2007).
[CrossRef]

R. C. Spitzer, R. L. Kauffman, T. Orzechowski, D. W. Phillion, and C. Cerjan, “Soft x-ray production from laser produced plasmas for lithography applications,” J. Vac. Sci. Technol. B 11(6), 2986–2989 (1993).
[CrossRef]

Nucl. Instr. and Meth. in Phys Res. A (1)

J. R. Schneider, “Properties and scientific perspectives of a single pass X-ray free-electron laser”, Nucl. Instr. and Meth. in Phys Res. A 398(1), 41–53 (1997).
[CrossRef]

Opt. Commun. (1)

S. Kranzusch and K. Mann, “Spectral characterization of EUV radiation emitted from a laser-irradiated gas puff target,” Opt. Commun. 200, 223 (2001).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

E. Louis, A. R. Khorsand, R. Sobierajski, E. D. van Hattum, M. Jurek, D. Klinger, J. B. Pelka, L. Juha, J. Chalupsky, J. Cihelka, V. Hajkova, U. Jastrow, S. Toleikis, H. Wabnitz, K. I. Tiedtke, J. Gaudin, E. M. Gullikson, and F. Bijkerk, “Damage studies of multilayer optics for XUV free electron lasers,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, and K. Mann, “Material analysis with EUV/XUV radiation using a broadband laser plasma source and optics system,” Proc. SPIE 7360, 736004 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

D. Hiroyuki, “Review of soft x-ray laser researches and developments,” Rep. Prog. Phys. 65(10), 1513–1576 (2002).
[CrossRef]

Rev. Sci. Instrum. (3)

C. Peth, S. Kranzusch, K. Mann, and W. Viöl, “Characterization of gas targets for laser produced extreme ultraviolet plasmas with a Hartmann-Shack sensor,” Rev. Sci. Instrum. 75(10), 3288 (2004).
[CrossRef]

S. Kranzusch, C. Peth, and K. Mann, “Spatial characterization of extreme ultraviolet plasmas generated by laser excitation of xenon gas targets,” Rev. Sci. Instrum. 74(2), 969 (2003).
[CrossRef]

F. Barkusky, C. Peth, K. Mann, T. Feigl, and N. Kaiser, “Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective,” Rev. Sci. Instrum. 76, 105102 (2005).
[CrossRef]

Surf. Sci. (1)

T. Makimura, Y. Kenmotsu, H. Miyamoto, H. Niino, and K. Murakami, “Ablation of silica glass using pulsed laser plasma soft X-rays,” Surf. Sci. 593(1-3), 248–251 (2005).
[CrossRef]

Other (5)

J. Albers, “Grundlagen integrierter Schaltungen”, Hanser Fachbuchverlag, ISBN: 3-446-40686-7 (2007).

Center for X-Ray Optics, Berkeley Lab, Homepage, “ http://www-cxro.lbl.gov/

Proceedings of SPIE, Boulder Damage Symposium (1996–2009).

International Organization for Standardization, “Lasers and laser-related equipment – Determination of laser-induced damage threshold of optical surfaces – Part 1: 1 on 1 test“, ISO 11254-1.

D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge University Press, ISBN 0–521–02997-X).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic drawing of the EUV source and optics system. On the left a pinhole camera image of the EUV plasma (solid gold target) is displayed.

Fig. 2
Fig. 2

Single-pulse (1-on-1) damage test of gold layer (69 nm thickness) on glass substrate left). For selected energy densities AFM micrographs (10 µm x 10 µm) are displayed, showing increasing damage effects (melting, number 1, 2) up to complete film removal (number 3).

Fig. 3
Fig. 3

Thickness dependence of single-pulse EUV damage thresholds determined for different gold layers on glass substrates; left: measured data, indicating a linear behaviour for both visible damage and film removal. Right: comparison of visible damage with theoretical calculations: (a) thermal model; (b) thermal model corrected by heat diffusion; (c) best fit.

Fig. 4
Fig. 4

1-on-1 damage probability plot of Mo/Si mirror (20° @ 13.5 nm wavelength, on silicon substrate) and corresponding Nomarski (DIC) images for selected fluences (image sizes 15µm x 15 µm).

Fig. 5
Fig. 5

left: Depths of EUV generated ablation profiles in fused silica as a function of EUV pulse number for selected fluences; right: resulting ablation rates d depending on EUV energy density H; the solid line represents the fit curve according to an ablation rate d = αeff−1 ln (H/Ht) (αeff=effective absorption coefficient, Ht = ablation threshold fluence); inset: AFM image of fused silica, irradiated with 5 pulses at highest fluence (6.6 J/cm2).

Fig. 6
Fig. 6

Single pulse damage threshold of silicon wafer measured at λ = 13.5 nm; the insets show typical morphologies of the observed surface damage (upper picture, squares) and crater damage (lower picture, circles).

Fig. 7
Fig. 7

Ablation rate of CaF2 vs. EUV energy density; the solid line represents the fit curve according to an ablation rate d = αeff −1 ln (H/Ht) (αeff=effective absorption coefficient, Ht=ablation threshold fluence); inset: AFM image of CaF2, irradiated with 1 pulse at highest fluence (6.6 J/cm2).

Fig. 8
Fig. 8

Comparison of single-pulse damage thresholds for EUV optics and substrates.

Tables (2)

Tables Icon

Table 1 Output parameters of the laser-based EUV plasma source. Energy and energy density values were calculated taking the measured transmittance of Zr into account.

Tables Icon

Table 2 Ablation characteristics of fused silica for 13.5 nm and 157 nm wavelengths and nanosecond pulse durations.

Metrics