Abstract

Coupling a tightly packed layer of discrete metal nanoparticles to the resonant mode of a photonic crystal surface has been demonstrated as a means for obtaining additional electromagnetic gain for surface-enhanced Raman spectroscopy (SERS), in which electric fields of the photonic crystal can couple to plasmon resonances of the metal nanoparticles. Because metal nanoparticles introduce absorption that quench the photonic crystal resonance, a balance must be achieved between locating the metal nanoparticles too close to the surface while still positioning them within the enhanced evanescent field to maximize coupling to surface plasmons. In this work, we describe a parametric study into the design of a photonic crystal-SERS substrate, comprised of a replica molded photonic crystal slab as the dielectric optical resonator, a SiO2 “post” layer spacer, and an Ag “cap” metal nanostructure. Using the Raman signal for trans-1,2-bis(4pyridyl)ethane, the coupling efficiency was maximized for a SiO2 “post” layer thickness of 50 nm and a Ag “cap” height of ~20 nm, providing an additional enhancement factor of 21.4.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Reyes-Goddard MSc, H Barr, and N Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
    [CrossRef]
  2. I. Pochrandc, Springer Tracts in Modern Physics (Springer-Verlag, 1984).
  3. D. A. Weitz, M. Moskovits, and J. A. Creighton, “Surface-enhanced Raman spectroscopy with emphasis on liquid-solid interfaces,” in Chemical Structure at Interfaces:New Laser and Optical Techniques, R. B. Hall and A.B. Ellis, eds. (VCH, 1986), pp. 197–243.
  4. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
    [CrossRef] [PubMed]
  5. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
    [CrossRef] [PubMed]
  6. C. Lin, L. Jiang, Y. Chai, H. Xiao, S. Chen, and H. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express 17(24), 21581–21589 (2009).
    [CrossRef] [PubMed]
  7. K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
    [CrossRef]
  8. I. M. White, J. Gohring, and X. Fan, “SERS-based detection in an optofluidic ring resonator platform,” Opt. Express 15(25), 17433–17442 (2007).
    [CrossRef] [PubMed]
  9. S. Kim, W. Zhang, and B. T. Cunningham, “Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 93(14), 143112 (2008).
    [CrossRef]
  10. W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens, Actuator B-Chem. 131(1), 279–284 (2008).
    [CrossRef]
  11. W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
    [CrossRef] [PubMed]
  12. W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
    [CrossRef]
  13. S. M. Kim, H. Kim, and S. Kang, “Development of an ultraviolet imprinting process for integrating a microlens array onto an image sensor,” Opt. Lett. 31(18), 2710–2712 (2006).
    [CrossRef] [PubMed]
  14. C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
    [CrossRef]
  15. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
    [CrossRef]
  16. N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering,” Opt. Express 14(2), 847–857 (2006).
    [CrossRef] [PubMed]
  17. http://www.d3diagnostics.com/en/klarite-substrates –10452

2009 (3)

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

C. Lin, L. Jiang, Y. Chai, H. Xiao, S. Chen, and H. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express 17(24), 21581–21589 (2009).
[CrossRef] [PubMed]

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
[CrossRef]

2008 (4)

S. Kim, W. Zhang, and B. T. Cunningham, “Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 93(14), 143112 (2008).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens, Actuator B-Chem. 131(1), 279–284 (2008).
[CrossRef]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
[CrossRef]

2007 (1)

2006 (3)

2005 (3)

J. M. Reyes-Goddard MSc, H Barr, and N Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[CrossRef]

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[CrossRef]

Alexander, K. D.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
[CrossRef]

Barr, H

J. M. Reyes-Goddard MSc, H Barr, and N Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[CrossRef]

Baumberg, J. J.

Block, I. D.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens, Actuator B-Chem. 131(1), 279–284 (2008).
[CrossRef]

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Chai, Y.

Chaney, S. B.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[CrossRef]

Charlton, M. D. B.

Chen, S.

Cunningham, B. T.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens, Actuator B-Chem. 131(1), 279–284 (2008).
[CrossRef]

S. Kim, W. Zhang, and B. T. Cunningham, “Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 93(14), 143112 (2008).
[CrossRef]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
[CrossRef]

Dal Negro, L.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Dhawan, A.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
[CrossRef]

Dieringer, J. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Dluhy, R. A.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[CrossRef]

Fan, X.

Ganesh, N.

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens, Actuator B-Chem. 131(1), 279–284 (2008).
[CrossRef]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

Gohring, J.

Gopinath, A.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Hampton, M. J.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
[CrossRef]

Jiang, L.

Kang, S.

Kim, H.

Kim, S.

S. Kim, W. Zhang, and B. T. Cunningham, “Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 93(14), 143112 (2008).
[CrossRef]

Kim, S. M.

Lin, C.

Lopeza, R.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
[CrossRef]

Mahnkopf, S.

Mathias, P. C.

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

McFarland, A. D.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Netti, C. M.

Nordlander, P.

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[CrossRef]

Oubre, C.

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[CrossRef]

Perney, N. M. B.

Premasiri, W. R.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Reyes-Goddard MSc, J. M.

J. M. Reyes-Goddard MSc, H Barr, and N Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[CrossRef]

Shah, N. C.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Shanmukh, S.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[CrossRef]

Stone, N

J. M. Reyes-Goddard MSc, H Barr, and N Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[CrossRef]

Stuart, D. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Tsai, H.

Van Duyne, R. P.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

White, I. M.

Whitney, A. V.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Xiao, H.

Xuc, H.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
[CrossRef]

Yonzon, C. R.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Young, M. A.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Zhang, S.

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
[CrossRef]

Zhang, W.

W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
[CrossRef]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

S. Kim, W. Zhang, and B. T. Cunningham, “Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 93(14), 143112 (2008).
[CrossRef]

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens, Actuator B-Chem. 131(1), 279–284 (2008).
[CrossRef]

Zhang, X.

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

Zhao, Y.-P.

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[CrossRef]

Ziegler, L.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Zoorob, M. E.

Appl. Phys. Lett. (3)

S. Kim, W. Zhang, and B. T. Cunningham, “Photonic crystals with SiO2-Ag “post-cap” nanostructure coatings for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 93(14), 143112 (2008).
[CrossRef]

W. Zhang and B. T. Cunningham, “Fluorescence enhancement by a photonic crystal with a nanorod-structured high index layer,” Appl. Phys. Lett. 93(13), 133115 (2008).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87(3), 031908 (2005).
[CrossRef]

Faraday Discuss. (1)

J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications,” Faraday Discuss. 132, 9–26 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

C. Oubre and P. Nordlander, “Finite-difference time-domain studies of the optical properties of nanoshell dimers,” J. Phys. Chem. B 109(20), 10042–10051 (2005).
[CrossRef]

J. Raman Spectrosc. (1)

K. D. Alexander, M. J. Hampton, S. Zhang, A. Dhawan, H. Xuc, and R. Lopeza, “A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays,” J. Raman Spectrosc. 40(12), 2171–2175 (2009).
[CrossRef]

Nano Lett. (1)

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Photodiagn. Photodyn. Ther. (1)

J. M. Reyes-Goddard MSc, H Barr, and N Stone, “Photodiagnosis using Raman and surface enhanced Raman scattering of bodily fluids,” Photodiagn. Photodyn. Ther. 2(3), 223–233 (2005).
[CrossRef]

Sens, Actuator B-Chem. (1)

W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens, Actuator B-Chem. 131(1), 279–284 (2008).
[CrossRef]

Small (1)

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

Other (3)

I. Pochrandc, Springer Tracts in Modern Physics (Springer-Verlag, 1984).

D. A. Weitz, M. Moskovits, and J. A. Creighton, “Surface-enhanced Raman spectroscopy with emphasis on liquid-solid interfaces,” in Chemical Structure at Interfaces:New Laser and Optical Techniques, R. B. Hall and A.B. Ellis, eds. (VCH, 1986), pp. 197–243.

http://www.d3diagnostics.com/en/klarite-substrates –10452

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic diagram of PC-SERS substrate and (b) cross sectional SEM image of SiO2-Ag “post-cap” nanostructure with a thickness of SiO2 layer of 75nm and a thickness of Ag layer of 20nm by OAD method.

Fig. 2
Fig. 2

Comparison of measured transmission spectra (a) from bare PC at the incident angles of 0° and 13° and from GL-SERS and PC-SERS substrate (b) with Ag nanostructures without SiO2 “post” (tp = 0 nm, tc = 40 nm), and (c) with 50 nm SiO2 “post” and 40nm Ag “cap” (tp = 50 nm, tc = 40 nm) at the incident angle of 13°; The expected spectrum in (b) and (c) were calculated spectrum from measured transmission of GL-SERS and bare PC substrates.

Fig. 3
Fig. 3

Simulated x-y plane EM amplitude distribution (z: top of Ag nanorods) for a single Ag nanostructure (a) on a GL-SERS substrate and (b), (c) on a PC-SERS substrate, which have the same SiO2-Ag “post-cap” nanostructure (tp: 50 nm, tc: 40nm) and illuminated with a TE polarized plane wave source (λ = 600 nm, incident E field magnitude = 1 V/m) at (a), (b) normal incident and (c) at a incident angle of ~13° (on-resonance condition)

Fig. 4
Fig. 4

(a) Schematics of the Raman detection instrument for PC-SERS and (b) measured Raman spectrum of BPE on GL-SERS substrate (tp = 0 nm, tc = 40 nm).

Fig. 5
Fig. 5

Effects on (a) simulated EMI NANO, EMI TOT and EMI PC, and (b) measured EF NANO, EF TOT, and EF PC at varying SiO2 “post” layer thicknesses for a fixed Ag “cap” thickness of 40nm.

Fig. 6
Fig. 6

Effects on the measured EF NANO, EF TOT, and EF PC varying thickness of Ag “cap” layer for a fixed SiO2 “post” thickness of 50nm.

Fig. 7
Fig. 7

Comparison of measured Raman spectra of BPE on GL-SERS and PC-SERS substrate (on and off resonance condition) with a SiO2 “post” thickness of 50nm and Ag “cap” height of 40nm.

Fig. 8
Fig. 8

Comparison of Raman spectra of BPE on Klarite® SERS substrate and PC-SERS substrate at resonance condition; the spectra for Klarite® SERS substrate was enlarged by a factor of 10.

Metrics