Abstract

We present an experimental and theoretical study of energy transfer from a wide-band supercontinuum to narrow-band second harmonic light during propagation of a femtosecond pulse in a MgO:LiNbO3 crystal. The energy removed from the supercontinuum at 1038 nm by phase-matched second harmonic generation is compensated by energy transfer from other wavelengths within the supercontinuum by self phase modulation via the Kerr effect.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
    [CrossRef]
  2. N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973).
    [CrossRef]
  3. A. V. Husakou, V. P. Kalosha, and J. Herrmann, “Supercontinuum generation and pulse compression in hollow waveguides,” Opt. Lett. 26(13), 1022–1024 (2001).
    [CrossRef]
  4. M. Spanner, M. Pshenichnikov, V. Olvo, and M. Ivanov, “Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses,” Appl. Phys. B 77(2-3), 329–336 (2003).
    [CrossRef]
  5. C. Homann, C. Schriever, P. Baum, and E. Riedle, “Octave wide tunable UV-pumped NOPA: pulses down to 20 fs at 0.5 MHz repetition rate,” Opt. Express 16(8), 5746–5756 (2008).
    [CrossRef] [PubMed]
  6. S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59(3), 2369–2384 (1999).
    [CrossRef]
  7. S. Akturk, A. Couairon, M. Franco, and A. Mysyrowicz, “Spectrogram representation of pulse self compression by filamentation,” Opt. Express 16(22), 17626–17636 (2008).
    [CrossRef] [PubMed]
  8. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
    [CrossRef]
  9. R. Sai Santosh Kumar, S. Sree Harsha, and D. Narayana Rao, “Broadband supercontinuum generation in a single potassium di-hydrogen phosphate(KDP) crystal achieved in tandem with sum frequency generation,” Appl. Phys. B 86(4), 615–621 (2007).
    [CrossRef]
  10. N. K. M. N. Srinivas, S. S. Harsha, and D. N. Rao, “Femtosecond supercontinuum generation in a quadratic nonlinear medium (KDP),” Opt. Express 13(9), 3224–3229 (2005).
    [CrossRef] [PubMed]
  11. H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, “Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 92(14), 143903 (2004).
    [CrossRef] [PubMed]
  12. H. Zeng, J. Wu, H. Xu, and K. Wu, “Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium,” Phys. Rev. Lett. 96(8), 083902 (2006).
    [CrossRef] [PubMed]
  13. X. Zhang, H. Jiang, L. Chen, Y. Jiang, H. Yang, and Q. Gong, “Wavelength femtosecond light pulse generated from filamentation-assisted fourth-order nonlinear process in potassium titanyl phosphate crystal,” Opt. Lett. 33(12), 1374–1376 (2008).
    [CrossRef] [PubMed]
  14. G. Xu, H. Zhu, T. Wang, and L. Qian, “Large high-order nonlinear phase shifts produced by χ(2) cascaded processes,” Opt. Commun. 207(1-6), 347–351 (2002).
    [CrossRef]
  15. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ((2)):χ((2)) nonlinearity,” Opt. Lett. 24(23), 1777–1779 (1999).
    [CrossRef]
  16. G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
    [CrossRef]
  17. C. Y. Chien, G. Korn, J. S. Coe, J. Squier, G. Mourou, and R. S. Craxton, “Highly efficient second-harmonic generation of ultraintense Nd:glass laser pulses,” Opt. Lett. 20(4), 353–355 (1995).
    [CrossRef] [PubMed]
  18. V. Krylov, A. Rebane, A. G. Kalintsev, H. Schwoerer, and U. P. Wild, “Second-harmonic generation of amplified femtosecond Ti:sapphire laser pulses,” Opt. Lett. 20(2), 198–200 (1995).
    [CrossRef] [PubMed]

2008 (3)

2007 (2)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

R. Sai Santosh Kumar, S. Sree Harsha, and D. Narayana Rao, “Broadband supercontinuum generation in a single potassium di-hydrogen phosphate(KDP) crystal achieved in tandem with sum frequency generation,” Appl. Phys. B 86(4), 615–621 (2007).
[CrossRef]

2006 (1)

H. Zeng, J. Wu, H. Xu, and K. Wu, “Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium,” Phys. Rev. Lett. 96(8), 083902 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, “Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 92(14), 143903 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Spanner, M. Pshenichnikov, V. Olvo, and M. Ivanov, “Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses,” Appl. Phys. B 77(2-3), 329–336 (2003).
[CrossRef]

2002 (1)

G. Xu, H. Zhu, T. Wang, and L. Qian, “Large high-order nonlinear phase shifts produced by χ(2) cascaded processes,” Opt. Commun. 207(1-6), 347–351 (2002).
[CrossRef]

2001 (1)

1999 (2)

X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ((2)):χ((2)) nonlinearity,” Opt. Lett. 24(23), 1777–1779 (1999).
[CrossRef]

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59(3), 2369–2384 (1999).
[CrossRef]

1995 (2)

1973 (1)

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973).
[CrossRef]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[CrossRef]

Akturk, S.

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[CrossRef]

Baum, P.

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973).
[CrossRef]

Chen, L.

Chien, C. Y.

Coe, J. S.

Couairon, A.

Craxton, R. S.

Dobryakov, A. L.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59(3), 2369–2384 (1999).
[CrossRef]

Ernsting, N. P.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59(3), 2369–2384 (1999).
[CrossRef]

Fan, D.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Franco, M.

Gong, Q.

Harsha, S. S.

Herrmann, J.

Homann, C.

Husakou, A. V.

Ivanov, M.

M. Spanner, M. Pshenichnikov, V. Olvo, and M. Ivanov, “Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses,” Appl. Phys. B 77(2-3), 329–336 (2003).
[CrossRef]

Jiang, H.

Jiang, Y.

Kalintsev, A. G.

Kalosha, V. P.

Kasparian, J.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Korn, G.

Kovalenko, S. A.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59(3), 2369–2384 (1999).
[CrossRef]

Krylov, V.

Liu, X.

Mourou, G.

Mysyrowicz, A.

Narayana Rao, D.

R. Sai Santosh Kumar, S. Sree Harsha, and D. Narayana Rao, “Broadband supercontinuum generation in a single potassium di-hydrogen phosphate(KDP) crystal achieved in tandem with sum frequency generation,” Appl. Phys. B 86(4), 615–621 (2007).
[CrossRef]

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Olvo, V.

M. Spanner, M. Pshenichnikov, V. Olvo, and M. Ivanov, “Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses,” Appl. Phys. B 77(2-3), 329–336 (2003).
[CrossRef]

Pshenichnikov, M.

M. Spanner, M. Pshenichnikov, V. Olvo, and M. Ivanov, “Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses,” Appl. Phys. B 77(2-3), 329–336 (2003).
[CrossRef]

Qian, L.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

G. Xu, H. Zhu, T. Wang, and L. Qian, “Large high-order nonlinear phase shifts produced by χ(2) cascaded processes,” Opt. Commun. 207(1-6), 347–351 (2002).
[CrossRef]

X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ((2)):χ((2)) nonlinearity,” Opt. Lett. 24(23), 1777–1779 (1999).
[CrossRef]

Rao, D. N.

Rebane, A.

Riedle, E.

Ruthmann, J.

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59(3), 2369–2384 (1999).
[CrossRef]

Sai Santosh Kumar, R.

R. Sai Santosh Kumar, S. Sree Harsha, and D. Narayana Rao, “Broadband supercontinuum generation in a single potassium di-hydrogen phosphate(KDP) crystal achieved in tandem with sum frequency generation,” Appl. Phys. B 86(4), 615–621 (2007).
[CrossRef]

Schriever, C.

Schwoerer, H.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[CrossRef]

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Spanner, M.

M. Spanner, M. Pshenichnikov, V. Olvo, and M. Ivanov, “Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses,” Appl. Phys. B 77(2-3), 329–336 (2003).
[CrossRef]

Squier, J.

Sree Harsha, S.

R. Sai Santosh Kumar, S. Sree Harsha, and D. Narayana Rao, “Broadband supercontinuum generation in a single potassium di-hydrogen phosphate(KDP) crystal achieved in tandem with sum frequency generation,” Appl. Phys. B 86(4), 615–621 (2007).
[CrossRef]

Srinivas, N. K. M. N.

Wang, T.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

G. Xu, H. Zhu, T. Wang, and L. Qian, “Large high-order nonlinear phase shifts produced by χ(2) cascaded processes,” Opt. Commun. 207(1-6), 347–351 (2002).
[CrossRef]

Wild, U. P.

Wise, F.

Wolf, J.-P.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Wu, E.

H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, “Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 92(14), 143903 (2004).
[CrossRef] [PubMed]

Wu, J.

H. Zeng, J. Wu, H. Xu, and K. Wu, “Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium,” Phys. Rev. Lett. 96(8), 083902 (2006).
[CrossRef] [PubMed]

H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, “Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 92(14), 143903 (2004).
[CrossRef] [PubMed]

Wu, K.

H. Zeng, J. Wu, H. Xu, and K. Wu, “Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium,” Phys. Rev. Lett. 96(8), 083902 (2006).
[CrossRef] [PubMed]

H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, “Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 92(14), 143903 (2004).
[CrossRef] [PubMed]

Xu, G.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

G. Xu, H. Zhu, T. Wang, and L. Qian, “Large high-order nonlinear phase shifts produced by χ(2) cascaded processes,” Opt. Commun. 207(1-6), 347–351 (2002).
[CrossRef]

Xu, H.

H. Zeng, J. Wu, H. Xu, and K. Wu, “Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium,” Phys. Rev. Lett. 96(8), 083902 (2006).
[CrossRef] [PubMed]

H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, “Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 92(14), 143903 (2004).
[CrossRef] [PubMed]

Yang, H.

Zeng, H.

H. Zeng, J. Wu, H. Xu, and K. Wu, “Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium,” Phys. Rev. Lett. 96(8), 083902 (2006).
[CrossRef] [PubMed]

H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, “Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 92(14), 143903 (2004).
[CrossRef] [PubMed]

Zhang, X.

Zhu, C.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Zhu, H.

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

G. Xu, H. Zhu, T. Wang, and L. Qian, “Large high-order nonlinear phase shifts produced by χ(2) cascaded processes,” Opt. Commun. 207(1-6), 347–351 (2002).
[CrossRef]

Appl. Phys. B (2)

M. Spanner, M. Pshenichnikov, V. Olvo, and M. Ivanov, “Controlled supercontinuum generation for optimal pulse compression: a time-warp analysis of nonlinear propagation of ultra-broad-band pulses,” Appl. Phys. B 77(2-3), 329–336 (2003).
[CrossRef]

R. Sai Santosh Kumar, S. Sree Harsha, and D. Narayana Rao, “Broadband supercontinuum generation in a single potassium di-hydrogen phosphate(KDP) crystal achieved in tandem with sum frequency generation,” Appl. Phys. B 86(4), 615–621 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Xu, L. Qian, T. Wang, H. Zhu, C. Zhu, and D. Fan, “Spectral Narrowing and Temporal Expanding of Femtosecond Pulses by Use of Quadratic Nonlinear Processes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 174–180 (2004).
[CrossRef]

Opt. Commun. (2)

G. Xu, H. Zhu, T. Wang, and L. Qian, “Large high-order nonlinear phase shifts produced by χ(2) cascaded processes,” Opt. Commun. 207(1-6), 347–351 (2002).
[CrossRef]

N. Bloembergen, “The influence of electron plasma formation on superbroadening in light filaments,” Opt. Commun. 8(4), 285–288 (1973).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (1)

S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A 59(3), 2369–2384 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

H. Zeng, J. Wu, H. Xu, K. Wu, and E. Wu, “Colored conical emission by means of second harmonic generation in a quadratically nonlinear medium,” Phys. Rev. Lett. 92(14), 143903 (2004).
[CrossRef] [PubMed]

H. Zeng, J. Wu, H. Xu, and K. Wu, “Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium,” Phys. Rev. Lett. 96(8), 083902 (2006).
[CrossRef] [PubMed]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett. 24(11), 592–594 (1970).
[CrossRef]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Rep. Prog. Phys. 70(10), 1633–1713 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The Glan prism is indicated by G, the lens by L1 and L2.

Fig. 2
Fig. 2

Panel (a) shows the pulse spectrum after passing through the crystal; Panel (b) shows spectrum of the output near-infrared light when the pump pulse energy is 0.23 mJ.

Fig. 3
Fig. 3

Panel (a) shows the spectra around 1038nm for both the IR continuum incident light (dashed black line) and the exit light (solid red line); Panel (b) shows the corresponding SH spectrum.

Fig. 4
Fig. 4

Comparison of output spectra with wavelengths above 960nm. red line (dashed): SHG and SCG taking place at the same time; black line (solid): only SCG is considered; blue line (dotted): after SHG using SCG as the pump pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( z , t ) = 1 2 A 1 ( z , t ) e i ω 1 t + i k 1 z + c . c E 2 ( z , t ) = 1 2 A 2 ( z , t ) e i ω 2 t + i k 2 z + c . c
A 1 z + ( k 1 ' k 2 ' ) A 1 t + 0.5 i k 1 2 A 1 t 2 = i ω 1 χ ( 2 ) 2 n 1 c A 2 A 1 * e i Δ k z + i 3 ω 1 χ ( 3 ) 4 n 1 c ( | A 1 | 2 + 2 | A 2 | 2 ) A 1 A 2 z + 0.5 i k 2 2 A 2 t 2 = i ω 2 χ ( 2 ) 2 n 2 c A 1 2 e i Δ k z + i 3 ω 2 χ ( 3 ) 4 n 2 c ( 2 | A 1 | 2 + | A 2 | 2 ) A 2 .
A 1 ( z = 0 , t ) = A 0 exp [ i ( ω 0 ω 1 ) t t 2 t p 2 ] .

Metrics