Abstract

This paper reports on-chip based optical detection with three-dimensional spatial resolution by integration of an optofluidic microscope (OFM) in a microfluidic pinched flow fractionation (PFF) separation device. This setup also enables on-chip particle image velocimetry (PIV). The position in the plane perpendicular to the flow direction and the velocity along the flow direction of separated fluorescent labeled polystyrene microspheres with diameters of 1μm, 2.1μm, 3μm and 4μm is determined by the OFM. These results are bench marked against those obtained with a PFF device using conventional fluorescence microscope readout. The size separated microspheres are detected by OFM with an accuracy of ≤0.92μm. The position in the height of the channel and the velocity of the separated microspheres are detected with an accuracy of 1.4μm and 0.08 mm/s respectively. Throughout the measurements of the height and velocity distribution, the microspheres are observed to move towards the center of the channel in regard to its height.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
    [CrossRef] [PubMed]
  2. T. L. Olesen, B. B. Buus, J. G. Howalt, and M. F. Hansen, "Magnetic micromixer: Influence og magnetic element geometry and field amplitude," Appl. Phys. 103,07E902 (2008).
  3. N. Pamme, "Continous flow separation in microfluidic devices," Lab Chip 7,1644-1654 (2007).
    [CrossRef] [PubMed]
  4. D. Janasek, J. Franzke, and A. Manz, "Scaling and design of miniaturized chemical-analysis systems," Nature 442,374-380 (2006).
    [CrossRef] [PubMed]
  5. A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
    [CrossRef]
  6. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
    [CrossRef] [PubMed]
  7. X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
    [CrossRef] [PubMed]
  8. X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based Optofluidic Microscope implementation method," Opt. Express 15,16367-16375 (2007).
    [CrossRef] [PubMed]
  9. R. Lindken, M. Rossi, S. Große, and J. Westerweel, "Micro-particle Image Velocimetry (μPIV): Recent developments, applications, and guidelines," Lab Chip 15,2551-2567 (2009).
    [CrossRef]
  10. M. Yamada, M. Nakashima, and M. Seki, "Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel," Anal. Chem. 76,5465-5471 (2004).
    [CrossRef] [PubMed]
  11. J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continous particle separation in a microchannel having asymmetrically arranged multiple branches," Lab Chip 5,778-784 (2005).
    [CrossRef] [PubMed]
  12. Y. Sai, M. Yamada, M. Yasuda, and M. Seki, "Continous separation of particles using a microfluidic device equipped with flow rate controle valves," J. Chromatogr. A 1127,214-220 (2006).
    [CrossRef] [PubMed]
  13. H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, "Continous and Size-Dependent Sorting of Amulsion Droplets Using Hydrodynamics in Pinched Microchannels," Langmuir 24,4405-4410 (2008).
    [CrossRef] [PubMed]
  14. A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, "Pinched flow fractionation devices for detection of single nucleotide polymorphisms," Lab Chip 8,818-821 (2008).
    [CrossRef] [PubMed]
  15. N. A. Mortensen, "Comment on ‘Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel’," Anal. Chem. 79,9240-9241 (2007).
    [CrossRef] [PubMed]
  16. A. L. Vig and A. Kristensen, "Separation enhancement in pinched flow fractionation," Appl. Phys. Lett. 93,203507 (2008).
    [CrossRef]
  17. B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
    [CrossRef]
  18. J. C. Giddings, Unified separation science, (Wiley and Sons, Inc, 1991).
  19. K. Yapici, R. L. Powell, and R. J. Phillips, "Particle migration and suspension structure in a steady and oscillatory plane Poiseuille flow," Phys. Fluids 21,053302 (2009).
    [CrossRef]

2009

R. Lindken, M. Rossi, S. Große, and J. Westerweel, "Micro-particle Image Velocimetry (μPIV): Recent developments, applications, and guidelines," Lab Chip 15,2551-2567 (2009).
[CrossRef]

K. Yapici, R. L. Powell, and R. J. Phillips, "Particle migration and suspension structure in a steady and oscillatory plane Poiseuille flow," Phys. Fluids 21,053302 (2009).
[CrossRef]

2008

H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, "Continous and Size-Dependent Sorting of Amulsion Droplets Using Hydrodynamics in Pinched Microchannels," Langmuir 24,4405-4410 (2008).
[CrossRef] [PubMed]

A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, "Pinched flow fractionation devices for detection of single nucleotide polymorphisms," Lab Chip 8,818-821 (2008).
[CrossRef] [PubMed]

A. L. Vig and A. Kristensen, "Separation enhancement in pinched flow fractionation," Appl. Phys. Lett. 93,203507 (2008).
[CrossRef]

T. L. Olesen, B. B. Buus, J. G. Howalt, and M. F. Hansen, "Magnetic micromixer: Influence og magnetic element geometry and field amplitude," Appl. Phys. 103,07E902 (2008).

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

2007

X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based Optofluidic Microscope implementation method," Opt. Express 15,16367-16375 (2007).
[CrossRef] [PubMed]

N. Pamme, "Continous flow separation in microfluidic devices," Lab Chip 7,1644-1654 (2007).
[CrossRef] [PubMed]

N. A. Mortensen, "Comment on ‘Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel’," Anal. Chem. 79,9240-9241 (2007).
[CrossRef] [PubMed]

2006

Y. Sai, M. Yamada, M. Yasuda, and M. Seki, "Continous separation of particles using a microfluidic device equipped with flow rate controle valves," J. Chromatogr. A 1127,214-220 (2006).
[CrossRef] [PubMed]

D. Janasek, J. Franzke, and A. Manz, "Scaling and design of miniaturized chemical-analysis systems," Nature 442,374-380 (2006).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

2005

J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continous particle separation in a microchannel having asymmetrically arranged multiple branches," Lab Chip 5,778-784 (2005).
[CrossRef] [PubMed]

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

2004

M. Yamada, M. Nakashima, and M. Seki, "Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel," Anal. Chem. 76,5465-5471 (2004).
[CrossRef] [PubMed]

1991

A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
[CrossRef]

Arroyo, O.

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Balslev, S.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

Baugh, L. R.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Birgens, H.

A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, "Pinched flow fractionation devices for detection of single nucleotide polymorphisms," Lab Chip 8,818-821 (2008).
[CrossRef] [PubMed]

Buus, B. B.

T. L. Olesen, B. B. Buus, J. G. Howalt, and M. F. Hansen, "Magnetic micromixer: Influence og magnetic element geometry and field amplitude," Appl. Phys. 103,07E902 (2008).

Cui, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

Dufva, M.

A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, "Pinched flow fractionation devices for detection of single nucleotide polymorphisms," Lab Chip 8,818-821 (2008).
[CrossRef] [PubMed]

Erickson, D.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

Fettinger, J. C.

A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
[CrossRef]

Franzke, J.

D. Janasek, J. Franzke, and A. Manz, "Scaling and design of miniaturized chemical-analysis systems," Nature 442,374-380 (2006).
[CrossRef] [PubMed]

Geshke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

Große, S.

R. Lindken, M. Rossi, S. Große, and J. Westerweel, "Micro-particle Image Velocimetry (μPIV): Recent developments, applications, and guidelines," Lab Chip 15,2551-2567 (2009).
[CrossRef]

Hansen, M.

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Hansen, M. F.

T. L. Olesen, B. B. Buus, J. G. Howalt, and M. F. Hansen, "Magnetic micromixer: Influence og magnetic element geometry and field amplitude," Appl. Phys. 103,07E902 (2008).

Harrison, D. J.

A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
[CrossRef]

Heng, X.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based Optofluidic Microscope implementation method," Opt. Express 15,16367-16375 (2007).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

Howalt, J. G.

T. L. Olesen, B. B. Buus, J. G. Howalt, and M. F. Hansen, "Magnetic micromixer: Influence og magnetic element geometry and field amplitude," Appl. Phys. 103,07E902 (2008).

Hsiao, E.

Janasek, D.

D. Janasek, J. Franzke, and A. Manz, "Scaling and design of miniaturized chemical-analysis systems," Nature 442,374-380 (2006).
[CrossRef] [PubMed]

Jeppesen, C.

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Johansen, D.

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

Kristensen, A.

A. L. Vig and A. Kristensen, "Separation enhancement in pinched flow fractionation," Appl. Phys. Lett. 93,203507 (2008).
[CrossRef]

A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, "Pinched flow fractionation devices for detection of single nucleotide polymorphisms," Lab Chip 8,818-821 (2008).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

Larsen, A. V.

A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, "Pinched flow fractionation devices for detection of single nucleotide polymorphisms," Lab Chip 8,818-821 (2008).
[CrossRef] [PubMed]

Ldi, H.

A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
[CrossRef]

Lee, L. M.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

Lindken, R.

R. Lindken, M. Rossi, S. Große, and J. Westerweel, "Micro-particle Image Velocimetry (μPIV): Recent developments, applications, and guidelines," Lab Chip 15,2551-2567 (2009).
[CrossRef]

Maenaka, H.

H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, "Continous and Size-Dependent Sorting of Amulsion Droplets Using Hydrodynamics in Pinched Microchannels," Langmuir 24,4405-4410 (2008).
[CrossRef] [PubMed]

Manz, A.

D. Janasek, J. Franzke, and A. Manz, "Scaling and design of miniaturized chemical-analysis systems," Nature 442,374-380 (2006).
[CrossRef] [PubMed]

A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
[CrossRef]

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

Mortensen, N. A.

N. A. Mortensen, "Comment on ‘Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel’," Anal. Chem. 79,9240-9241 (2007).
[CrossRef] [PubMed]

Nakashima, M.

M. Yamada, M. Nakashima, and M. Seki, "Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel," Anal. Chem. 76,5465-5471 (2004).
[CrossRef] [PubMed]

Obieta, I. M.

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Olesen, T. L.

T. L. Olesen, B. B. Buus, J. G. Howalt, and M. F. Hansen, "Magnetic micromixer: Influence og magnetic element geometry and field amplitude," Appl. Phys. 103,07E902 (2008).

Özkapici, V.

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Pamme, N.

N. Pamme, "Continous flow separation in microfluidic devices," Lab Chip 7,1644-1654 (2007).
[CrossRef] [PubMed]

Phillips, R. J.

K. Yapici, R. L. Powell, and R. J. Phillips, "Particle migration and suspension structure in a steady and oscillatory plane Poiseuille flow," Phys. Fluids 21,053302 (2009).
[CrossRef]

Poulsen, L.

A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, "Pinched flow fractionation devices for detection of single nucleotide polymorphisms," Lab Chip 8,818-821 (2008).
[CrossRef] [PubMed]

Powell, R. L.

K. Yapici, R. L. Powell, and R. J. Phillips, "Particle migration and suspension structure in a steady and oscillatory plane Poiseuille flow," Phys. Fluids 21,053302 (2009).
[CrossRef]

Psaltis, D.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based Optofluidic Microscope implementation method," Opt. Express 15,16367-16375 (2007).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

Rossi, M.

R. Lindken, M. Rossi, S. Große, and J. Westerweel, "Micro-particle Image Velocimetry (μPIV): Recent developments, applications, and guidelines," Lab Chip 15,2551-2567 (2009).
[CrossRef]

Sai, Y.

Y. Sai, M. Yamada, M. Yasuda, and M. Seki, "Continous separation of particles using a microfluidic device equipped with flow rate controle valves," J. Chromatogr. A 1127,214-220 (2006).
[CrossRef] [PubMed]

Seki, M.

H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, "Continous and Size-Dependent Sorting of Amulsion Droplets Using Hydrodynamics in Pinched Microchannels," Langmuir 24,4405-4410 (2008).
[CrossRef] [PubMed]

Y. Sai, M. Yamada, M. Yasuda, and M. Seki, "Continous separation of particles using a microfluidic device equipped with flow rate controle valves," J. Chromatogr. A 1127,214-220 (2006).
[CrossRef] [PubMed]

J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continous particle separation in a microchannel having asymmetrically arranged multiple branches," Lab Chip 5,778-784 (2005).
[CrossRef] [PubMed]

M. Yamada, M. Nakashima, and M. Seki, "Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel," Anal. Chem. 76,5465-5471 (2004).
[CrossRef] [PubMed]

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

Sternberg, P. W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

Sternberg, P.W.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

Szabo, P.

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Takagi, J.

J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continous particle separation in a microchannel having asymmetrically arranged multiple branches," Lab Chip 5,778-784 (2005).
[CrossRef] [PubMed]

Tegenfeldt, J. O.

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Verpoorte, E.

A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
[CrossRef]

Vig, A. L.

A. L. Vig and A. Kristensen, "Separation enhancement in pinched flow fractionation," Appl. Phys. Lett. 93,203507 (2008).
[CrossRef]

Westerweel, J.

R. Lindken, M. Rossi, S. Große, and J. Westerweel, "Micro-particle Image Velocimetry (μPIV): Recent developments, applications, and guidelines," Lab Chip 15,2551-2567 (2009).
[CrossRef]

Widmer, H. M.

A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
[CrossRef]

Yamada, M.

H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, "Continous and Size-Dependent Sorting of Amulsion Droplets Using Hydrodynamics in Pinched Microchannels," Langmuir 24,4405-4410 (2008).
[CrossRef] [PubMed]

Y. Sai, M. Yamada, M. Yasuda, and M. Seki, "Continous separation of particles using a microfluidic device equipped with flow rate controle valves," J. Chromatogr. A 1127,214-220 (2006).
[CrossRef] [PubMed]

J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continous particle separation in a microchannel having asymmetrically arranged multiple branches," Lab Chip 5,778-784 (2005).
[CrossRef] [PubMed]

M. Yamada, M. Nakashima, and M. Seki, "Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel," Anal. Chem. 76,5465-5471 (2004).
[CrossRef] [PubMed]

Yang, C.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

X. Heng, E. Hsiao, D. Psaltis, and C. Yang, "An optical tweezer actuated, nanoaperture-grid based Optofluidic Microscope implementation method," Opt. Express 15,16367-16375 (2007).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

Yapici, K.

K. Yapici, R. L. Powell, and R. J. Phillips, "Particle migration and suspension structure in a steady and oscillatory plane Poiseuille flow," Phys. Fluids 21,053302 (2009).
[CrossRef]

Yaqoob, Z.

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

Yasuda, M.

H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, "Continous and Size-Dependent Sorting of Amulsion Droplets Using Hydrodynamics in Pinched Microchannels," Langmuir 24,4405-4410 (2008).
[CrossRef] [PubMed]

Y. Sai, M. Yamada, M. Yasuda, and M. Seki, "Continous separation of particles using a microfluidic device equipped with flow rate controle valves," J. Chromatogr. A 1127,214-220 (2006).
[CrossRef] [PubMed]

J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continous particle separation in a microchannel having asymmetrically arranged multiple branches," Lab Chip 5,778-784 (2005).
[CrossRef] [PubMed]

Zhong, W.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

Anal. Chem.

M. Yamada, M. Nakashima, and M. Seki, "Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel," Anal. Chem. 76,5465-5471 (2004).
[CrossRef] [PubMed]

N. A. Mortensen, "Comment on ‘Pinched Flow Fractionation: Continous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel’," Anal. Chem. 79,9240-9241 (2007).
[CrossRef] [PubMed]

Appl. Phys.

T. L. Olesen, B. B. Buus, J. G. Howalt, and M. F. Hansen, "Magnetic micromixer: Influence og magnetic element geometry and field amplitude," Appl. Phys. 103,07E902 (2008).

Appl. Phys. Lett.

A. L. Vig and A. Kristensen, "Separation enhancement in pinched flow fractionation," Appl. Phys. Lett. 93,203507 (2008).
[CrossRef]

J. Chromatogr. A

Y. Sai, M. Yamada, M. Yasuda, and M. Seki, "Continous separation of particles using a microfluidic device equipped with flow rate controle valves," J. Chromatogr. A 1127,214-220 (2006).
[CrossRef] [PubMed]

J. Vac. Sci. Technol. B

B. Bilenberg, M. Hansen, D. Johansen, V. Özkapici, C. Jeppesen, P. Szabo, I. M. Obieta, O. Arroyo, J. O. Tegenfeldt, and A. Kristensen, "Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography," J. Vac. Sci. Technol. B 23,2944-2949 (2005).
[CrossRef]

Lab Chip

J. Takagi, M. Yamada, M. Yasuda, and M. Seki, "Continous particle separation in a microchannel having asymmetrically arranged multiple branches," Lab Chip 5,778-784 (2005).
[CrossRef] [PubMed]

N. Pamme, "Continous flow separation in microfluidic devices," Lab Chip 7,1644-1654 (2007).
[CrossRef] [PubMed]

X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P.W. Sternberg, D. Psaltis, and C. Yang, "Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip," Lab Chip 6,1274-1276 (2006).
[CrossRef] [PubMed]

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geshke, J. P. Kutter, and A. Kristensen, "Lab-on-a-chip with integrated optical transducers," Lab Chip 6,213-217 (2006).
[CrossRef] [PubMed]

R. Lindken, M. Rossi, S. Große, and J. Westerweel, "Micro-particle Image Velocimetry (μPIV): Recent developments, applications, and guidelines," Lab Chip 15,2551-2567 (2009).
[CrossRef]

A. V. Larsen, L. Poulsen, H. Birgens, M. Dufva, and A. Kristensen, "Pinched flow fractionation devices for detection of single nucleotide polymorphisms," Lab Chip 8,818-821 (2008).
[CrossRef] [PubMed]

Langmuir

H. Maenaka, M. Yamada, M. Yasuda, and M. Seki, "Continous and Size-Dependent Sorting of Amulsion Droplets Using Hydrodynamics in Pinched Microchannels," Langmuir 24,4405-4410 (2008).
[CrossRef] [PubMed]

Nature

D. Janasek, J. Franzke, and A. Manz, "Scaling and design of miniaturized chemical-analysis systems," Nature 442,374-380 (2006).
[CrossRef] [PubMed]

Opt. Express

Phys. Fluids

K. Yapici, R. L. Powell, and R. J. Phillips, "Particle migration and suspension structure in a steady and oscillatory plane Poiseuille flow," Phys. Fluids 21,053302 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proc. Natl. Acad. Sci. U.S.A. 105,10670-10675 (2008).
[CrossRef] [PubMed]

Trends Anal. Chem.

A. Manz, J. C. Fettinger, E. Verpoorte, H. Ldi, H. M. Widmer, and D. J. Harrison, "Micromachining of monocrystalline silicon and glass for chemical analysis systems - A look into next century’s technology or just a fashionable craze," Trends Anal. Chem. 10,144-149 (1991).
[CrossRef]

Other

J. C. Giddings, Unified separation science, (Wiley and Sons, Inc, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Principle of pinched flow fractionation (PFF) with an integrated optofluidic microscope (OFM) located in the broadening segment. (b) Illustration of how transmitted light trough an aperture is effected when particles pass in the channel. The light is collected by an objective, after passing the channel, and redirected to a CCD. The angle of the collected light is defined by the numerical aperture of the objective.

Fig. 2.
Fig. 2.

(a) The device layout. (b) A microscope image of a finished device with backside illumination. The OFM apertures appear as white dots. (c) Scanning electron microscope image of an aperture. The footprint of the isotropic aluminum etch is clearly visible.

Fig. 3.
Fig. 3.

Cross-sectional illustration of the measuring setup. A device is mounted in chuck width fluid connections. The backside of the device is illuminated by collimated light, and the part that is transmitted through the apertures in the device is collected by a 10x air objective (NA = 0.3), focused by a lens onto a CCD.

Fig. 4.
Fig. 4.

Transmission readout from the OFM. (a) Readout from one aperture as function of time and when 2.1 μm polystyrene spheres passes. (b) Readout from a 2.1 μm microsphere effecting the transmission from several apertures. (c) Reference fluorescence microscope images of 30 pinched 2.1 μm microspheres passing above the apertures. The exposure time of the microscope is long, so the microspheres appears as lines and several microspheres have passed in the image.

Fig. 5.
Fig. 5.

Cross-sectional view of the propagation of transmitted light from one aperture in the microfluidic device. Two spheres are passing in two different horizontal positions. I: The sphere is located exactly above the aperture, so the transmission dip is at its maximum. II: The sphere is tangent to the cone of light collected from the aperture by the objective, and the transmission from this aperture is unaffected. This sphere effects the transmission from the five apertures to the left. Besides geometries, the refractive indices of air, na, the lid, nl, the fluid, nf, and the channel material, nr, is shown in the figure.

Fig. 6.
Fig. 6.

Histogram of the position in the broadening segment of separated fluorescent labeled polystyrene microspheres with average diameters of 1μm, 2.1μm, 3μm and 4μm detected by the optofluidic microscope. A Gaussian function is fitted to each of the peaks in the histogram and the position of their maximum together with the standard deviation is given in Table 1.

Fig. 7.
Fig. 7.

Histogram of the height position of 1 μm and 2.1 μm pinched fluorescent labeled PS microspheres. The channel height is 12.5 μm.

Fig. 8.
Fig. 8.

Histogram of the velocity of 1μm and 2.1μm pinched fluorescent labeled PS microspheres. The vertical lines indicate the expected minimum, vmin, and maximum, vmax, velocity of the carrier fluid.

Tables (1)

Tables Icon

Table 1. Measured diameter, D, and standard deviation in diameter,σ(D), of the separated microspheres (1μm, 2.1μm, 3μm and 4μm delivered with a standard deviation in size of 5%). The numerically model (see text) is used to convert the distance from the channel wall to the center of the microsphere in the broadening segment and the spreading, detected by OFM and fluorescence microscopy to diameters and the corresponding standard deviations. The model does not include diffusion, which is the reason for the large deviation between the measured standard deviations and those given by the manufacturer of the microspheres.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y = i y i ( 1 T i ) i ( 1 T i )
z = s D 2 cos [ arcsin ( NA n f ) ] r tan [ arcsin ( NA n r ) ] tan [ arcsin ( NA n f ) ] D 2 NA n f

Metrics