Abstract

A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin of the mode selection properties of the new structure is rigorously analyzed and compared to other structures reported in the literature. The possibility of engineering the emission shape while retaining strong single mode operation is highly desirable for low-cost mid-range optical interconnects applications as well as the compact optical trapping of high-refractive-index dielectric particles and low-refractive-index, absorbing, or metallic particles.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, and E. Kapon, “10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands,” in Optical Fiber Communication Conference (Optical Society of America, 2008), paper OThS2.
  2. S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
    [CrossRef]
  3. D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(12), 1599–1606 (2002).
    [CrossRef]
  4. Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
    [CrossRef]
  5. A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
    [CrossRef]
  6. A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electron. Lett. 42(2), 93 (2006).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  8. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [CrossRef] [PubMed]
  9. A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
    [CrossRef]
  10. K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electron. Lett. 43(2), 107 (2007).
    [CrossRef]
  11. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
    [CrossRef] [PubMed]
  12. G. P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers,” Phys. Rev. A 63(2), 023816 (2001).
    [CrossRef]
  13. P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
    [CrossRef]
  14. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).
  15. P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
    [CrossRef]
  16. P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15(3), 828–837 (2009).
    [CrossRef]
  17. A. W. Snyder, and J. D. Love, Optical waveguide theory, (Chapman & Hall, 1983).

2009 (1)

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15(3), 828–837 (2009).
[CrossRef]

2008 (1)

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

2007 (1)

K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electron. Lett. 43(2), 107 (2007).
[CrossRef]

2006 (2)

A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
[CrossRef]

A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electron. Lett. 42(2), 93 (2006).
[CrossRef]

2005 (1)

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).

2004 (3)

Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[CrossRef]

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[CrossRef]

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
[CrossRef] [PubMed]

2002 (2)

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(12), 1599–1606 (2002).
[CrossRef]

2001 (2)

G. P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers,” Phys. Rev. A 63(2), 023816 (2001).
[CrossRef]

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

1996 (1)

1986 (1)

Amann, M.-C.

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

Ashkin, A.

Baba, T.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[CrossRef]

Baets, R.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Bava, G. P.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

G. P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers,” Phys. Rev. A 63(2), 023816 (2001).
[CrossRef]

Bienstman, P.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Bjorkholm, J. E.

Böhm, G.

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

Brunner, M.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Chu, S.

Chuang, S. L.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Conradi, O.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Debernardi, P.

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15(3), 828–837 (2009).
[CrossRef]

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

G. P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers,” Phys. Rev. A 63(2), 023816 (2001).
[CrossRef]

Dziedzic, J. M.

Feneberg, M.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).

Fratta, L.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

G. P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers,” Phys. Rev. A 63(2), 023816 (2001).
[CrossRef]

Furukawa, A.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[CrossRef]

Gahagan, K. T.

Gulden, K.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Gustavsson, J. S.

Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[CrossRef]

Haglund, Å.

Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[CrossRef]

Hoshi, M.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[CrossRef]

Hwang, S. M.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Imada, M.

Jalics, C.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).

Jeon, H.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Kardosh, I.

A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
[CrossRef]

A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electron. Lett. 42(2), 93 (2006).
[CrossRef]

Kim, D. S.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Kim, H.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Klein, B.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Kögel, B.

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

Koh, B. C.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Kroner, A.

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15(3), 828–837 (2009).
[CrossRef]

A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
[CrossRef]

A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electron. Lett. 42(2), 93 (2006).
[CrossRef]

Larsson, A.

Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[CrossRef]

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Lee, J. W.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Matsuzono, A.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[CrossRef]

Maute, M.

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

Mawst, L. J.

D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(12), 1599–1606 (2002).
[CrossRef]

May, J. F.

A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
[CrossRef]

Meissner, P.

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

Michalzik, R.

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15(3), 828–837 (2009).
[CrossRef]

A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
[CrossRef]

A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electron. Lett. 42(2), 93 (2006).
[CrossRef]

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).

Modh, P.

Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[CrossRef]

Moritoh, K.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[CrossRef]

Nam, S. H.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Noble, M. J.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Noda, S.

K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electron. Lett. 43(2), 107 (2007).
[CrossRef]

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12(8), 1562–1568 (2004).
[CrossRef] [PubMed]

Ohnishi, D.

Okano, T.

Ortsiefer, M.

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

Ostermann, J. M.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).

Park, S.-H.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Park, Y.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Pregla, R.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Rinaldi, F.

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15(3), 828–837 (2009).
[CrossRef]

A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
[CrossRef]

A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electron. Lett. 42(2), 93 (2006).
[CrossRef]

Riyopoulos, S. A.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Roscher, H.

A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
[CrossRef]

Sakai, K.

K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electron. Lett. 43(2), 107 (2007).
[CrossRef]

Sasaki, S.

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[CrossRef]

Seurin, J.-F. P.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Sohn, J. Y.

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

Swartzlander, G. A.

Vukusic, J.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Vukušic, J.

Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[CrossRef]

Wenzel, H.

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

Zhou, D.

D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(12), 1599–1606 (2002).
[CrossRef]

Zogal, K.

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

S.-H. Park, Y. Park, H. Kim, H. Jeon, S. M. Hwang, J. W. Lee, S. H. Nam, B. C. Koh, J. Y. Sohn, and D. S. Kim, “Microlensed vertical-cavity surface-emitting laser for stable single fundamental mode operation,” Appl. Phys. Lett. 80(2), 183–185 (2002).
[CrossRef]

A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett. 85(22), 5161–5163 (2004).
[CrossRef]

Electron. Lett. (2)

A. Kroner, I. Kardosh, F. Rinaldi, and R. Michalzik, “Towards VCSEL-based integrated optical traps for biomedical applications,” Electron. Lett. 42(2), 93 (2006).
[CrossRef]

K. Sakai and S. Noda, “Optical trapping of metal particles in doughnut-shaped beam emitted by photonic-crystal laser,” Electron. Lett. 43(2), 107 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

D. Zhou and L. J. Mawst, “High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 38(12), 1599–1606 (2002).
[CrossRef]

P. Bienstman, R. Baets, J. Vukusic, A. Larsson, M. J. Noble, M. Brunner, K. Gulden, P. Debernardi, L. Fratta, G. P. Bava, H. Wenzel, B. Klein, O. Conradi, R. Pregla, S. A. Riyopoulos, J.-F. P. Seurin, and S. L. Chuang, “Comparison of optical VCSEL models on the simulation of oxide-confined devices,” IEEE J. Quantum Electron. 37(12), 1618–1631 (2001).
[CrossRef]

P. Debernardi, B. Kögel, K. Zogal, P. Meissner, M. Maute, M. Ortsiefer, G. Böhm, and M.-C. Amann, “Modal properties of long-wavelength tunable MEMS-VCSELs with curved mirrors: Comparison of experiment and modeling,” IEEE J. Quantum Electron. 44(4), 391–399 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Debernardi, A. Kroner, F. Rinaldi, and R. Michalzik, “Surface relief versus standard VCSELs: a comparison between experimental and hot-cavity model results,” IEEE J. Sel. Top. Quantum Electron. 15(3), 828–837 (2009).
[CrossRef]

IEEE J. Selected Topics in Quant. Electron. (1)

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Selected Topics in Quant. Electron. 11(1), 1–10 (2005).

IEEE Photon. Technol. Lett. (1)

Å. Haglund, J. S. Gustavsson, J. Vukušić, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

G. P. Bava, P. Debernardi, and L. Fratta, “Three-dimensional model for vectorial fields in vertical-cavity surface-emitting lasers,” Phys. Rev. A 63(2), 023816 (2001).
[CrossRef]

Proc. SPIE (1)

A. Kroner, J. F. May, I. Kardosh, F. Rinaldi, H. Roscher, and R. Michalzik, “Novel concepts of vertical-cavity laser-based optical traps for biomedical applications,” Proc. SPIE 6191, 619112 (2006).
[CrossRef]

Other (2)

A. Syrbu, A. Mereuta, V. Iakovlev, A. Caliman, P. Royo, and E. Kapon, “10 Gbps VCSELs with high single mode output in 1310 nm and 1550 nm wavelength bands,” in Optical Fiber Communication Conference (Optical Society of America, 2008), paper OThS2.

A. W. Snyder, and J. D. Love, Optical waveguide theory, (Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic profiles of (a) a thick microlens VCSEL [2], (b) a thin microlens VCSEL for Gaussian-shaped emission, (c) a thin microlens VCSEL for doughnut-shaped emission, (d) a surface relief VCSEL, (e) a surface relief VCSEL with a polymer microlens [9], and (f) a reference multimode VCSEL.

Fig. 2
Fig. 2

(a) Threshold gains of the 9 lowest modes vs. lens thickness, h. List of threshold gains with mode intensity profiles for (b) h=46.2λ/4 and (c) h=47λ/4.

Fig. 3
Fig. 3

(a) Illustration of constructive and destructive interferences along the curved lens surface. (b1, b2, c1, c2) Upward Poynting vector profiles. Two modes (HE11 and EH31) with two lens thicknesses (46.2λ/4 and 47λ/4), are compared.

Fig. 4
Fig. 4

(a) Schematic illustration of the focused feedback model. Unfolded beam propagation paths of (b) the fundamental mode and (c) a higher order mode.

Fig. 5
Fig. 5

(b) Threshold gains of 15 modes vs. misaligned distance, d, defined with respect to the center of the oxide aperture, as shown in (a).

Fig. 6
Fig. 6

(a1, a2, b1, b2) Upward Poynting vector profiles. Two modes (HE11 and TM02) when the misalignment d = 0 and 1.5 µm, are compared. (c) Far-field profile of d=1 µm case.

Fig. 7
Fig. 7

(a) Illustration of phase relations that give rise to the single central region (‘+’) of constructive interference. The phases α1, α2, β1, and β2 denotes phase shifts after a round trip or a mere reflection indicated by blue and red arrows. (b) Threshold gains of 15 modes vs. misaligned distance, d.

Fig. 8
Fig. 8

(a1, a2, b1, b2) Upward Poynting vector profiles. Two modes (HE11 and TM02) are compared for different degrees of misalignment, i.e., d = 0 and 1.5 µm.

Fig. 9
Fig. 9

Mode stability factor, S, vs. oxide aperture diameter, dOX. The radius of curvature, R and the surface relief diameter, dSR of each structure are given.

Fig. 10
Fig. 10

Beam focusing profiles of (a) d=0 µm case and (b) d=1.0 µm case of the λ/4-thick microlens design for Gaussian-shaped emission. (c) Beam focusing profile of the 2λ/4-thick microlens design for doughnut-shaped emission (d=0 µm). The oxide aperture size is 15 µm for all three cases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = ( g 1 g 0 ) / g 0 × 100   ( % ) ,

Metrics