Abstract

Abstract: We experimentally demonstrate a single-pumped, non-degenerate phase-sensitive parametric amplifier with a precise control of phase and amplitude of the in-going waves and investigate in detail its gain, attenuation and saturation properties in comparison with operation in phase insensitive amplifier (PIA) mode. We experimentally observe the variation of the gain and attenuation as a function of the relative phase, pump power and the signal-idler power ratio. The phase sensitive gain spectrum is studied over a 24 nm symmetrical bandwidth and we achieve a maximum phase sensitive amplification (PSA) gain of 33 dB. A departure from the theoretical maximum attenuation as the gain increases is observed and explained.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus and J. A. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev. 128(5), 2407–2413 (1962).
    [CrossRef]
  2. Y. Mu and C. M. Savage, “Parametric amplifiers in phase-noise-limited optical communications,” J. Opt. Soc. Am. B 9(1), 65–70 (1992).
    [CrossRef]
  3. A. Bogris and D. Syvridis, “RZ-DPSK Signal Regeneration Based on Dual-Pump Phase-Sensitive Amplification in Fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
    [CrossRef]
  4. K. Croussore, I. Kim, Y. Han, C. Kim, G. Li, and S. Radic, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13(11), 3945–3950 (2005).
    [CrossRef] [PubMed]
  5. K. Croussore and G. F. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
    [CrossRef]
  6. K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
    [CrossRef]
  7. L. Ruo-Ding, P. Kumar, and W. L. Kath, “Dispersion Compensation with Phase-sensitive Optical Amplifiers,” IEEE J. Lightwave Technol. 12(3), 541–549 (1994).
    [CrossRef]
  8. K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
    [CrossRef]
  9. M. Sköld, J. Yang, H. Sunnerud, M. Karlsson, S. Oda, and P. A. Andrekson, “Constellation diagram analysis of DPSK signal regeneration in a saturated parametric amplifier,” Opt. Express 16(9), 5974–5982 (2008).
    [CrossRef] [PubMed]
  10. M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17(5), 1055–1057 (2005).
    [CrossRef]
  11. M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear fibre interferometer,” Electron. Lett. 27(3), 210–211 (1991).
    [CrossRef]
  12. W. Imajuku, A. Takada, and Y. Yamabayashi, “In-line Coherent Optical Amplifier with Noise Figure Lower than 3 dB Quantum Limit,” Electron. Lett. 36(1), 63–64 (2000).
    [CrossRef]
  13. C. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12(20), 4973–4979 (2004).
    [CrossRef] [PubMed]
  14. O. Lim, V. Grigoryan, M. Shin, and P. Kumar, “Ultra-Low-Noise Inline Fiber-Optic Phase-Sensitive Amplifier for Analog Optical Signals,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OML3.
  15. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13(26), 10483–10493 (2005).
    [CrossRef] [PubMed]
  16. Z. Tong, C. Lundström, A. Bogris, M. Karlsson, P. A. Andrekson, and D. Syvridis, “Measurement of sub-1 dB-Noise Figure in a Non-degenerate Cascaded Phase-sensitive Fibre Parametric Amplifier,” in Proceedings of European Conference on Optical Communications, Vienna, Austria 2009, paper 1.1.2.
  17. R. Tang, P. S. Devgan, V. S. Grigoryan, P. Kumar, and M. Vasilyev, “In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave-mixing in fiber,” Opt. Express 16(12), 9046–9053 (2008).
    [CrossRef] [PubMed]
  18. M. Vasilyev, “Distributed phase-sensitive amplification,” Opt. Express 13(19), 7563–7571 (2005).
    [CrossRef] [PubMed]
  19. C. Lundström, J. Kakande, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Experimental Comparison of Gain and Saturation Characteristics of a Parametric Amplifier in Phase-sensitive and Phase-insensitive Mode,” in Proceedings of European Conference on Optical Communications, Vienna, Austria 2009, paper 1.1.1.
  20. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998).
    [CrossRef]

2008 (3)

2007 (2)

K. Croussore and G. F. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
[CrossRef]

2006 (1)

A. Bogris and D. Syvridis, “RZ-DPSK Signal Regeneration Based on Dual-Pump Phase-Sensitive Amplification in Fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[CrossRef]

2005 (4)

2004 (1)

2000 (1)

W. Imajuku, A. Takada, and Y. Yamabayashi, “In-line Coherent Optical Amplifier with Noise Figure Lower than 3 dB Quantum Limit,” Electron. Lett. 36(1), 63–64 (2000).
[CrossRef]

1998 (1)

1994 (1)

L. Ruo-Ding, P. Kumar, and W. L. Kath, “Dispersion Compensation with Phase-sensitive Optical Amplifiers,” IEEE J. Lightwave Technol. 12(3), 541–549 (1994).
[CrossRef]

1992 (1)

1991 (1)

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear fibre interferometer,” Electron. Lett. 27(3), 210–211 (1991).
[CrossRef]

1962 (1)

H. A. Haus and J. A. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev. 128(5), 2407–2413 (1962).
[CrossRef]

Andrekson, P. A.

Bogris, A.

A. Bogris and D. Syvridis, “RZ-DPSK Signal Regeneration Based on Dual-Pump Phase-Sensitive Amplification in Fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[CrossRef]

Croussore, K.

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
[CrossRef]

K. Croussore and G. F. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

K. Croussore, I. Kim, Y. Han, C. Kim, G. Li, and S. Radic, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13(11), 3945–3950 (2005).
[CrossRef] [PubMed]

Devgan, P. S.

Grigoryan, V.

Grigoryan, V. S.

Han, Y.

Haus, H. A.

H. A. Haus and J. A. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev. 128(5), 2407–2413 (1962).
[CrossRef]

Hsia, C. H.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear fibre interferometer,” Electron. Lett. 27(3), 210–211 (1991).
[CrossRef]

Imajuku, W.

W. Imajuku, A. Takada, and Y. Yamabayashi, “In-line Coherent Optical Amplifier with Noise Figure Lower than 3 dB Quantum Limit,” Electron. Lett. 36(1), 63–64 (2000).
[CrossRef]

Jeong, J. M.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear fibre interferometer,” Electron. Lett. 27(3), 210–211 (1991).
[CrossRef]

Karlsson, M.

Kath, W. L.

L. Ruo-Ding, P. Kumar, and W. L. Kath, “Dispersion Compensation with Phase-sensitive Optical Amplifiers,” IEEE J. Lightwave Technol. 12(3), 541–549 (1994).
[CrossRef]

Kim, C.

Kim, I.

Kumar, P.

Lasri, J.

Li, G.

Li, G. F.

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

K. Croussore and G. F. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

Marhic, M. E.

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear fibre interferometer,” Electron. Lett. 27(3), 210–211 (1991).
[CrossRef]

Matsumoto, M.

M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17(5), 1055–1057 (2005).
[CrossRef]

McKinstrie, C.

Mu, Y.

Mullen, J. A.

H. A. Haus and J. A. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev. 128(5), 2407–2413 (1962).
[CrossRef]

Oda, S.

Radic, S.

Ruo-Ding, L.

L. Ruo-Ding, P. Kumar, and W. L. Kath, “Dispersion Compensation with Phase-sensitive Optical Amplifiers,” IEEE J. Lightwave Technol. 12(3), 541–549 (1994).
[CrossRef]

Savage, C. M.

Sköld, M.

Sunnerud, H.

Syvridis, D.

A. Bogris and D. Syvridis, “RZ-DPSK Signal Regeneration Based on Dual-Pump Phase-Sensitive Amplification in Fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[CrossRef]

Takada, A.

W. Imajuku, A. Takada, and Y. Yamabayashi, “In-line Coherent Optical Amplifier with Noise Figure Lower than 3 dB Quantum Limit,” Electron. Lett. 36(1), 63–64 (2000).
[CrossRef]

Tang, R.

Vasilyev, M.

Yamabayashi, Y.

W. Imajuku, A. Takada, and Y. Yamabayashi, “In-line Coherent Optical Amplifier with Noise Figure Lower than 3 dB Quantum Limit,” Electron. Lett. 36(1), 63–64 (2000).
[CrossRef]

Yang, J.

Electron. Lett. (3)

M. E. Marhic, C. H. Hsia, and J. M. Jeong, “Optical amplification in a nonlinear fibre interferometer,” Electron. Lett. 27(3), 210–211 (1991).
[CrossRef]

W. Imajuku, A. Takada, and Y. Yamabayashi, “In-line Coherent Optical Amplifier with Noise Figure Lower than 3 dB Quantum Limit,” Electron. Lett. 36(1), 63–64 (2000).
[CrossRef]

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett. 43(3), 177–178 (2007).
[CrossRef]

IEEE J. Lightwave Technol. (1)

L. Ruo-Ding, P. Kumar, and W. L. Kath, “Dispersion Compensation with Phase-sensitive Optical Amplifiers,” IEEE J. Lightwave Technol. 12(3), 541–549 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Croussore and G. F. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Bogris and D. Syvridis, “RZ-DPSK Signal Regeneration Based on Dual-Pump Phase-Sensitive Amplification in Fibers,” IEEE Photon. Technol. Lett. 18(20), 2144–2146 (2006).
[CrossRef]

K. Croussore and G. F. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

M. Matsumoto, “Regeneration of RZ-DPSK signals by fiber-based all-optical regenerators,” IEEE Photon. Technol. Lett. 17(5), 1055–1057 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (6)

Phys. Rev. (1)

H. A. Haus and J. A. Mullen, “Quantum Noise in Linear Amplifiers,” Phys. Rev. 128(5), 2407–2413 (1962).
[CrossRef]

Other (3)

O. Lim, V. Grigoryan, M. Shin, and P. Kumar, “Ultra-Low-Noise Inline Fiber-Optic Phase-Sensitive Amplifier for Analog Optical Signals,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OML3.

Z. Tong, C. Lundström, A. Bogris, M. Karlsson, P. A. Andrekson, and D. Syvridis, “Measurement of sub-1 dB-Noise Figure in a Non-degenerate Cascaded Phase-sensitive Fibre Parametric Amplifier,” in Proceedings of European Conference on Optical Communications, Vienna, Austria 2009, paper 1.1.2.

C. Lundström, J. Kakande, P. A. Andrekson, Z. Tong, M. Karlsson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Experimental Comparison of Gain and Saturation Characteristics of a Parametric Amplifier in Phase-sensitive and Phase-insensitive Mode,” in Proceedings of European Conference on Optical Communications, Vienna, Austria 2009, paper 1.1.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Phase sensitive amplifier setup based on cascaded FOPAs with precise phase and amplitude tuning between the two stages together with the sketch of the phases of the various waves as they propagate through the system. PM: phase modulator, EDFA: erbium doped fibre amplifier, PC: polarization controller.

Fig. 2
Fig. 2

FOPA2 output spectra when pump and ASE from FOPA1 are coupled into FOPA2 without mid-stage filtering.

Fig. 3
Fig. 3

PSA phase dependent gain at varying pump powers with signal and idler powers equalized. Lines are theoretical curves.

Fig. 4
Fig. 4

PSA gain as the signal-to-idler power ratio is varied. The lines are respective results of simulations using the same parameters as in the experiment. Pump power is 1.2W and two modulation tones were used.

Fig. 5
Fig. 5

Measured PIA (circles), PSA maximum (diamonds), PSA minimum (squares) and difference between PIA and PSA maximum (triangles) gains of FOPA2 versus pump power. Two modulation tones were used.

Fig. 6
Fig. 6

Measured PIA (circles), PSA maximum (diamonds) and difference between PIA and PSA maximum (triangles) gains of FOPA2 versus input signal power at 1nm detuning and 1.2W pump. Dashed line shows PSA gain at the gain peak with 2W pump

Fig. 7
Fig. 7

Measured PIA gain (circles), PSA maximum gain (diamonds), PSA maximum attenuation (squares) and difference between PIA and PSA gain (triangles) gains of FOPA2 as a function of the signal wavelength with pump power of 1.2 W.

Metrics