Abstract

We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical permittivity is calculated and used in finite element mode simulations. The suitability of liquid crystal photonic bandgap fiber devices for filters, wave-plates or sensors is highly dependent on the tunability of the transmission spectrum. In this contribution we investigate how the bandgap tunability is determined by the parameters of the liquid crystals. This enables us to identify suitable liquid crystals for tunable photonic bandgap fiber devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. A. Bjarklev, J. Broeng, and A. S. Bjarklev, "Photonic Crystal Fibres" (Kluwer Academic, Dordrecht, 2003).
  3. C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
    [CrossRef]
  4. T. T. Larsen, A. Bjarklev, D. S. Hermann and J. Broeng, "Optic devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003).
    [CrossRef] [PubMed]
  5. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004).
    [CrossRef] [PubMed]
  6. F. Du, Y. Lu and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
    [CrossRef]
  7. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
    [CrossRef]
  8. L. Scolari,T. T. Alkeskjold, J. Riishede, A. Bjarklev,D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
    [CrossRef] [PubMed]
  9. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, H. Bartelt, "Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range," Opt. Express 16, 19375-19381 (2008).
    [CrossRef]
  10. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
    [CrossRef]
  11. L. Scolari, T. T. Alkeskjold, A.O. Bjarklev "Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42, 1270-1271 (2006).
    [CrossRef]
  12. D. Nordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007).
    [CrossRef]
  13. T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
    [CrossRef]
  14. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
    [CrossRef]
  15. P. D. de Gennes, "The Physics of Liquid Crystals," (Clarendon,1974).
  16. J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold and A. O. Bjarklev, "Biased Liquid Crystal Photonic Bandgap Fiber," Opt. Express 17, 4442-4453 (2009).
    [CrossRef] [PubMed]
  17. J. Lægsgaard, "Modelling of a biased liquid-crystal capillary waveguide," JOSA B 23, 1843-1851 (2006).
    [CrossRef]
  18. J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
    [CrossRef]

2009 (2)

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
[CrossRef]

J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold and A. O. Bjarklev, "Biased Liquid Crystal Photonic Bandgap Fiber," Opt. Express 17, 4442-4453 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

D. Nordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

2006 (3)

J. Lægsgaard, "Modelling of a biased liquid-crystal capillary waveguide," JOSA B 23, 1843-1851 (2006).
[CrossRef]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

L. Scolari, T. T. Alkeskjold, A.O. Bjarklev "Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42, 1270-1271 (2006).
[CrossRef]

2005 (2)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
[CrossRef]

L. Scolari,T. T. Alkeskjold, J. Riishede, A. Bjarklev,D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

2004 (3)

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004).
[CrossRef] [PubMed]

F. Du, Y. Lu and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

2003 (2)

2002 (1)

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Alkeskjold, T. T.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
[CrossRef]

J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold and A. O. Bjarklev, "Biased Liquid Crystal Photonic Bandgap Fiber," Opt. Express 17, 4442-4453 (2009).
[CrossRef] [PubMed]

D. Nordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007).
[CrossRef]

L. Scolari, T. T. Alkeskjold, A.O. Bjarklev "Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42, 1270-1271 (2006).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
[CrossRef]

L. Scolari,T. T. Alkeskjold, J. Riishede, A. Bjarklev,D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li and S. Wu "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12,5857-5871 (2004).
[CrossRef] [PubMed]

Alkeskjold, T.T.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Anawati, A.

Bartelt, H.

Bassi, P.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

L. Scolari,T. T. Alkeskjold, J. Riishede, A. Bjarklev,D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

Bjarklev, A.

Bjarklev, A. O.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
[CrossRef]

J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold and A. O. Bjarklev, "Biased Liquid Crystal Photonic Bandgap Fiber," Opt. Express 17, 4442-4453 (2009).
[CrossRef] [PubMed]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Bjarklev, A.O.

L. Scolari, T. T. Alkeskjold, A.O. Bjarklev "Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42, 1270-1271 (2006).
[CrossRef]

Broeng, J.

Dabrowski, R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Dolinski, M.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Domanski, A. W.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Du, F.

F. Du, Y. Lu and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

Eggleton, B. J.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
[CrossRef]

Ertman, S.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Eskildsen, L.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
[CrossRef]

Gauza, S.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
[CrossRef]

Hermann, D.

Hermann, D. S.

Hermann, D.S.

Kerbage, C.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Kitzerow, H.-S.

Kobelke, J.

Lægsgaard, J.

Laegsgaard, J.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Lægsgaard, J.

Larsen, T.T.

Lesiak, P.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Li, J.

Lorenz, A.

Lu, Y.

F. Du, Y. Lu and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

Mach, P.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Nielsen, M.

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
[CrossRef]

Noordegraaf, D.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Nordegraaf, D.

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
[CrossRef]

L. Scolari,T. T. Alkeskjold, J. Riishede, A. Bjarklev,D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

Rindorf, L.

Rogers, J. A.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Schwuchow, A.

Scolari, L.

J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold and A. O. Bjarklev, "Biased Liquid Crystal Photonic Bandgap Fiber," Opt. Express 17, 4442-4453 (2009).
[CrossRef] [PubMed]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
[CrossRef]

D. Nordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

L. Scolari, T. T. Alkeskjold, A.O. Bjarklev "Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42, 1270-1271 (2006).
[CrossRef]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
[CrossRef]

L. Scolari,T. T. Alkeskjold, J. Riishede, A. Bjarklev,D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Express 13, 7483-7496 (2005).
[CrossRef] [PubMed]

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Tartarini, G.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Wei, L.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
[CrossRef]

J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold and A. O. Bjarklev, "Biased Liquid Crystal Photonic Bandgap Fiber," Opt. Express 17, 4442-4453 (2009).
[CrossRef] [PubMed]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Weirich, J.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
[CrossRef]

J. Weirich, J. Lægsgaard, L. Scolari, L. Wei, T. T. Alkeskjold and A. O. Bjarklev, "Biased Liquid Crystal Photonic Bandgap Fiber," Opt. Express 17, 4442-4453 (2009).
[CrossRef] [PubMed]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Windeler, R. S.

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Wojcik, J.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Wu, S.

Wu, S. T.

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

Wu, S.T.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Wu, S.-T.

F. Du, Y. Lu and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

Appl. Optics (1)

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, A. O. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

F. Du, Y. Lu and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85,2181-2183 (2004).
[CrossRef]

Electron. Lett. (1)

L. Scolari, T. T. Alkeskjold, A.O. Bjarklev "Tunable gaussian filter based on tapered liquid crystal photonic bandgap fibre," Electron. Lett. 42, 1270-1271 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan and A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid crystal filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821, (2005).
[CrossRef]

J. Appl. Phys. (1)

J. Li and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys. 95, 896-901 (2004).
[CrossRef]

JOSA B (1)

J. Lægsgaard, "Modelling of a biased liquid-crystal capillary waveguide," JOSA B 23, 1843-1851 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A.W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki and J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres," Meas. Sci. Technol. 17, 985-991 (2006).
[CrossRef]

Opt. Commun. (1)

C. Kerbage, R. S. Windeler, B. J. Eggleton, P. Mach, M. Dolinski, and J. A. Rogers, "Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber," Opt. Commun. 204, 179-184 (2002).
[CrossRef]

Opt. Express (6)

Opt. Quantum Electron. (1)

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Laegsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S. T. Wu, and A. O. Bjarklev, "Integrating liquid crystal based optical devices in photonic crystal fibers," Opt. Quantum Electron.,  39, 1009-1019 (2007).
[CrossRef]

Science (1)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (2)

A. Bjarklev, J. Broeng, and A. S. Bjarklev, "Photonic Crystal Fibres" (Kluwer Academic, Dordrecht, 2003).

P. D. de Gennes, "The Physics of Liquid Crystals," (Clarendon,1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

a) Schematic illustration of a photonic crystal fiber with four rings of LC infiltrated capillaries and placed between two electrodes. Symmetries are applied to reduce the calculation domain. b) Director structure for a splay aligned LC with 90° boundary alignment in a capillary.

Fig. 2.
Fig. 2.

Relative alignment change when applying an external bias depending on ∆ε for a) 45° and b) 90° boundary alignment. The solid curves are the fitted values. Insets show the alignment change from the nonbiased case.

Fig. 3.
Fig. 3.

Relative alignment reorientation when applying an external bias depending on ε for a) 45° and b) 90° boundary alignment. The solid curves are the fitted values. The insets show the alignment deviation from the unbiased case.

Fig. 4.
Fig. 4.

Relative alignment reorientation when applying an external bias, depending on K 1 for fixed K 3 values. a) 45° boundary alignment and b) 90° boundary alignment. The smooth curves are the fitted values.

Fig. 5.
Fig. 5.

Contour plot of |E| for the capillary modes for 45° boundary alignment.

Fig. 6.
Fig. 6.

Mode dispersion plots of the capillary modes for a) 45° and b) 90° boundary alignment without (black, lower) and with (red, upper) applied bias. The blue lines represent the material dispersion of the background material

Fig. 7.
Fig. 7.

Effective index shift depending on ∆ε when applying an external bias for a) 45° boundary alignment and b) 90° boundary alignment. The values were obtained close to the cutoff wavelengths of the modes.

Fig. 8.
Fig. 8.

Relative effective index shift depending on ∆ε for a) 45° boundary alignment and b) 90° boundary alignment. The relative values are taken with respect to the effective index shift of the modes of the reference configuration. The crossed lines show the fitting curves obtained from the alignment simulations.

Fig. 9.
Fig. 9.

Effective index shift depending on ε when applying an external bias, for a) 45° and b) 90° boundary alignment. The values were taken close to the cutoff wavelengths of the modes.

Fig. 10.
Fig. 10.

Relative effective index shift depending on ε for a) 45° and b) 90° boundary alignment. The relative values are taken with respect to the reference configuration. The crossed lines show the fitting curves from the alignment simulations.

Fig. 11.
Fig. 11.

Effective index plots for K 3/K 1 = 1 (black,lower) and K 3/K 1 = 1.4 (red, upper) for a) 45° boundary alignment and b) 90° boundary alignment. The insets show the effective index change of the y-polarizations of the modes depending on K 3/K 1.

Fig. 12.
Fig. 12.

Relative effective index shift depending on K 1 when applying an external bias for a) 45° and b) 90° boundary alignment.The plots show the results for K 3/K 1 = 1

Fig. 13.
Fig. 13.

Relative effective index shift depending on K 1 when applying an external bias for a) 45° and b) 90° boundary alignment. The relative values are taken with respect to the reference configuration. The crossed lines show the fitting curves from the alignment simulations. The plots show the results for K 3/K 1 = 1

Fig. 14.
Fig. 14.

Relative effective index shift depending on ∆n when applying an external bias for a) 45° and b) 90° boundary alignment. The relative values are with respect to the effective index shift for the reference configuration.

Tables (2)

Tables Icon

Table 1. Average mode tunability for 45° and 90° boundary aligned LCs.

Tables Icon

Table 2. The physical parameters of E7 and MDA-00-1444

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

· ε ϕ = 0 ,
F [ n ] = F 0 + F el = Ω d Ω ( K 1 2 ( · n ) 2 + K 2 2 ( n · × n ) 2 + K 3 2 ( n × × n ) 2 ) Ω d Ω ( 1 2 D . E )
D = ε E + ε E = ε E + Δε ( E · n ) n ε ij = ε δ ij + Δε n i n j
δ n ̂ = Ω d Ω n ̂ n ̂ 0 Ω d Ω n ̂ R n ̂ R 0 ,
x i = q j x i q i = m q i .
ε Si O 2 = 1 + 1 3 a j λ 2 λ 2 b j 2
ε o , e = ( A 1 o , e + A 2 o , e λ 2 + A 3 o , e λ 4 ) 2

Metrics