Abstract

We study experimentally and theoretically the transport properties of Ag nanowire macrobundles in the presence of light irradiation. We have observed significant negative photoconductivity induced by the interaction between electrons and the excited surface plasmon polaritons (SPPs). As temperature T increases from 77 K to 304 K, the dark resistivity ρd without light irradiation increases linearly with T, and the resistivity change Δρ due to light irradiation decreases nonlinearly with increasing T. The current change |ΔI| due to light irradiation, which is proportional to the laser intensity, also decreases nonlinearly with increasing T. We explain well the experimental results using our proposed model with a new scattering channel due to the interaction between electrons and SPPs. Both our experimental and theoretical results reveal the novel phenomena due to the combination of photonics and electronics properties of Ag nanowires and they will be useful for scientific research, and technical applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  2. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
    [CrossRef] [PubMed]
  3. M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
    [CrossRef] [PubMed]
  4. K. Y. Bliokh, Y. P. Bliokh, and A. Ferrando, “Resonant Plasmon-Soliton Interaction,” arXiv: 0806.2183.
  5. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  7. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
    [CrossRef] [PubMed]
  8. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
    [CrossRef]
  9. P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
    [CrossRef]
  10. Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93(16), 166108 (2004).
    [CrossRef] [PubMed]
  11. Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004).
    [CrossRef] [PubMed]
  12. N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
    [CrossRef] [PubMed]
  13. P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
    [CrossRef]
  14. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
    [CrossRef]
  15. M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
    [CrossRef]
  16. B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001).
    [CrossRef] [PubMed]
  17. J. Xu, J. L. Sun, and J. L. Zhu, “Thermo- and photoinduced voltages in Ag heterodimensional junctions,” Appl. Phys. Lett. 91(16), 161107 (2007).
    [CrossRef]
  18. W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range,” Phys. Rev. B 66(7), 075414 (2002).
    [CrossRef]
  19. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  20. J. Shi and X. C. Xie, “Radiation-induced “zero-resistance state” and the photon-assisted transport,” Phys. Rev. Lett. 91(8), 086801 (2003).
    [CrossRef] [PubMed]

2008 (2)

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

2007 (2)

M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
[CrossRef]

J. Xu, J. L. Sun, and J. L. Zhu, “Thermo- and photoinduced voltages in Ag heterodimensional junctions,” Appl. Phys. Lett. 91(16), 161107 (2007).
[CrossRef]

2006 (3)

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

2005 (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

2004 (2)

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93(16), 166108 (2004).
[CrossRef] [PubMed]

Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004).
[CrossRef] [PubMed]

2003 (2)

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

J. Shi and X. C. Xie, “Radiation-induced “zero-resistance state” and the photon-assisted transport,” Phys. Rev. Lett. 91(8), 086801 (2003).
[CrossRef] [PubMed]

2002 (1)

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range,” Phys. Rev. B 66(7), 075414 (2002).
[CrossRef]

2001 (2)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001).
[CrossRef] [PubMed]

2000 (1)

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

1997 (2)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Badolato, A.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

Bae, S. C.

B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001).
[CrossRef] [PubMed]

Barbour, R.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Biedermann, B.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Boukai, A.

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

Bryant, G. W.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Calabi, F.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Chen, C. D.

M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
[CrossRef]

Chen, Y. Y.

M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
[CrossRef]

Cingolani, R.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

De Vittorio, M.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Diana, F.

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Engelhardt, M.

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range,” Phys. Rev. B 66(7), 075414 (2002).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Gerardot, B.

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

Gerardot, B. D.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Govorov, A. O.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Gueroui, Z.

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93(16), 166108 (2004).
[CrossRef] [PubMed]

Harutyunyan, S. R.

M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
[CrossRef]

Heath, J. R.

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Hong, B. H.

B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jackson, T. N.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Jeong, S.

B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001).
[CrossRef] [PubMed]

Karrai, K.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Kim, K. S.

B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Kroner, M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Lai, S. J.

M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
[CrossRef]

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Lee, C. W.

B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001).
[CrossRef] [PubMed]

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Libchaber, A.

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93(16), 166108 (2004).
[CrossRef] [PubMed]

Lieber, C. M.

Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004).
[CrossRef] [PubMed]

Lu, W.

Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004).
[CrossRef] [PubMed]

Mallouk, T. E.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Manna, L.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Martin, B. R.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Martiradonna, L.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Mayer, T. S.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Mbindyo, J.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Melosh, N. A.

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nordquist, C. D.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Ou, M. N.

M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Petroff, P. M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

Pompa, P. P.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Remi, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Rinaldi, R.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Sala, F. D.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Schindler, G.

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range,” Phys. Rev. B 66(7), 075414 (2002).
[CrossRef]

Schmidt, M. A.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Seidl, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Shi, J.

J. Shi and X. C. Xie, “Radiation-induced “zero-resistance state” and the photon-assisted transport,” Phys. Rev. Lett. 91(8), 086801 (2003).
[CrossRef] [PubMed]

Smith, P. A.

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

St. J. Russell, P.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Steinhögl, W.

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range,” Phys. Rev. B 66(7), 075414 (2002).
[CrossRef]

Steinlesberger, G.

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range,” Phys. Rev. B 66(7), 075414 (2002).
[CrossRef]

Sun, J. L.

J. Xu, J. L. Sun, and J. L. Zhu, “Thermo- and photoinduced voltages in Ag heterodimensional junctions,” Appl. Phys. Lett. 91(16), 161107 (2007).
[CrossRef]

Torre, A. D.

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Tyagi, H. K.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Warburton, R. J.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004).
[CrossRef] [PubMed]

Xiang, J.

Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004).
[CrossRef] [PubMed]

Xie, X. C.

J. Shi and X. C. Xie, “Radiation-induced “zero-resistance state” and the photon-assisted transport,” Phys. Rev. Lett. 91(8), 086801 (2003).
[CrossRef] [PubMed]

Xu, J.

J. Xu, J. L. Sun, and J. L. Zhu, “Thermo- and photoinduced voltages in Ag heterodimensional junctions,” Appl. Phys. Lett. 91(16), 161107 (2007).
[CrossRef]

Yang, C.

Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004).
[CrossRef] [PubMed]

Yang, T. J.

M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Zhang, W.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Zhu, J. L.

J. Xu, J. L. Sun, and J. L. Zhu, “Thermo- and photoinduced voltages in Ag heterodimensional junctions,” Appl. Phys. Lett. 91(16), 161107 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, B. R. Martin, J. Mbindyo, and T. E. Mallouk, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77(9), 1399–1401 (2000).
[CrossRef]

J. Xu, J. L. Sun, and J. L. Zhu, “Thermo- and photoinduced voltages in Ag heterodimensional junctions,” Appl. Phys. Lett. 91(16), 161107 (2007).
[CrossRef]

J. Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys. 90(8), 3825–3830 (2001).
[CrossRef]

Nat. Nanotechnol. (1)

P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. De Vittorio, F. Calabi, R. Cingolani, and R. Rinaldi, “Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control,” Nat. Nanotechnol. 1(2), 126–130 (2006).
[CrossRef]

Nature (2)

Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430(6995), 61–65 (2004).
[CrossRef] [PubMed]

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[CrossRef] [PubMed]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. B (2)

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, “Size-dependent resistivity of metallic wires in the mesoscopic range,” Phys. Rev. B 66(7), 075414 (2002).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, P. St. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Z. Gueroui and A. Libchaber, “Single-molecule measurements of gold-quenched quantum dots,” Phys. Rev. Lett. 93(16), 166108 (2004).
[CrossRef] [PubMed]

J. Shi and X. C. Xie, “Radiation-induced “zero-resistance state” and the photon-assisted transport,” Phys. Rev. Lett. 91(8), 086801 (2003).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

M. N. Ou, S. R. Harutyunyan, S. J. Lai, C. D. Chen, T. J. Yang, and Y. Y. Chen, “Thermal and electrical transport properties of a single nickel nanowire,” Phys. Status Solidi 244(12), 4512–4517 (2007) (b).
[CrossRef]

Science (4)

B. H. Hong, S. C. Bae, C. W. Lee, S. Jeong, and K. S. Kim, “Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase,” Science 294(5541), 348–351 (2001).
[CrossRef] [PubMed]

N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science 300(5616), 112–115 (2003).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Other (1)

K. Y. Bliokh, Y. P. Bliokh, and A. Ferrando, “Resonant Plasmon-Soliton Interaction,” arXiv: 0806.2183.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Photograph of as-fabricated AgNWB located between two conductive silver paint electrodes. (b) SEM image of the AgNWB. (c) TEM image of the ultrasonically dispersed AgNWs. (d) Schematic measurement setup for photoconductivity of the AgNWB.

Fig. 2
Fig. 2

(a) I-V characteristics of the AgNWB without light irradiation at 304 K (red line) and 77 K (blue line). (b) Dark resistance (without light irradiation) Rd of the AgNWB as a function of temperature. (c) Dynamic response of negative photoconductivity at 304 K when the AgNWB was irradiated (on/off circles) by 142.3 mW continuous laser under a bias voltage of 0.1 V. (d) and (e) are dynamic responses of negative photoconductivity at 304 K and 77 K, respectively, when the AgNWB was irradiated by 142.3 mW pulsed light (the pulse duty factor is about 6%) under a bias voltage of 0.1 V. (f) The absolute values of the photo-induced current change |ΔI| (pink line) and |ΔI| -1/4 (green line) as a function of temperature.

Fig. 3
Fig. 3

(a) The ratio of photo-induced resistivity change Δρ / ρd of the AgNWB as a function of temperature. (b) The absolute values of the change of the photo-induced current |ΔI| of the AgNWB as a function of laser power P at 77 K (blue line) and 304 K (red line) under a bias voltage of 0.1 V.

Fig. 4
Fig. 4

(a) and (b) are sketch maps for a strip of Ag thin film without and with some ultrasonically dispersed AgNWs on the Ag film surface under the laser spot, respectively. (c) and (d) are dynamic responses of negative photoconductivity at 304 K for samples in Figs. 4(a) and 4(b), respectively, when the Ag films was irradiated by 142.3 mW pulsed light (the pulse duty factor is about 6%) under a bias voltage of 0.1 V.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ 3 = m n e 2 τ 3 λ m D ,
I = I 0 + Δ I 1 / ρ d γ P l 0 2 ρ d 2 λ m D .
l 0 ( T = 77 K ) l 0 ( T = 304 K ) = [ k ( T = 77 K ) k ( T = 304 K ) ] 1 / 4 .

Metrics