Abstract

The sensitivities of resonant wavelengths of photonic crystal (PhC) membrane nanocavities with embedded InAs quantum dots to the ambient refractive index are reported for use in (bio) chemical sensing. The resonances for the different modes of several point-defect type cavities are obtained by photoluminescence measurements. Systematic trends of the variation of sensitivity with increase of the overlap of the modes with the PhC holes are observed for varying cavity type as well as for a given mode within a cavity type. A maximum sensitivity of ~300 nm/RIU (refractive index unit) is observed, corresponding to ~25% mode overlap with the holes and complete infiltration with the aqueous solution.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface-Plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
    [CrossRef]
  2. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated optical Mach-Zehnder biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
    [CrossRef]
  3. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication, and performance of a pigtailed intergrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
    [CrossRef]
  4. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
    [CrossRef]
  5. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  6. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
    [CrossRef]
  7. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  8. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
    [CrossRef]
  9. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [CrossRef] [PubMed]
  10. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  11. M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
    [CrossRef]
  12. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [CrossRef] [PubMed]
  13. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
    [CrossRef] [PubMed]
  14. D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
    [CrossRef]
  15. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008).
    [CrossRef] [PubMed]
  16. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  17. S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
    [CrossRef]
  18. M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
    [CrossRef]
  19. A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
    [CrossRef]
  20. R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
    [CrossRef]
  21. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
    [CrossRef]
  22. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
    [CrossRef]
  23. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
    [CrossRef]
  24. F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
    [CrossRef]
  25. F. Schneider, ed., Sugar Analysis-ICUMSA, (International Commission for Uniform Methods of Sugar Analysis, (ICUMSA), 1979, (ICUMSA), 2009).
  26. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
    [CrossRef] [PubMed]
  27. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  28. S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16(9), 6515–6527 (2008).
    [CrossRef] [PubMed]

2009 (5)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
[CrossRef]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[CrossRef]

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (5)

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

2006 (3)

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

2004 (2)

2003 (2)

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002 (1)

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

2000 (1)

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

1999 (1)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication, and performance of a pigtailed intergrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

1998 (1)

1993 (1)

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface-Plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

Abstreiter, G.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Aldridge, J. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Anantathanasarn, S.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Anthes-Washburn, M.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Baba, T.

Baets, R.

Balet, L.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Barbarin, Y.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Bartolozzi, I.

Bente, E. A. J. M.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Bettotti, P.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Bienstman, P.

Bjarklev, A.

Carlsen, A.

Chbouki, N.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Choi, J. H.

Chow, E.

Chu, S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Colocci, M.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

de Sterke, C. M.

De Vos, K.

de Vries, T.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Desai, T. A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Dhar, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
[CrossRef]

Di Falco, A.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Dorfner, D. F.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Eijkemans, T. J.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Erickson, D.

Fabricius, N.

Fan, X. D.

Fauchet, P. M.

Finley, J. J.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Fiore, A.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Folkenberg, J. R.

Francardi, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Frandsen, L. H.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Freeman, D.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Geluk, E. J.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Gerardino, A.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Giessen, H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Gill, D.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Girolami, G.

Grillet, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Grot, A.

Gurioli, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Hansen, T. P.

Heideman, R. G.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication, and performance of a pigtailed intergrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

Hoiby, P. E.

Hollenbach, U.

Hryniewicz, J.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Huh, J.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Hurlimann, T.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Hwang, J. K.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Ingenhoff, J.

Intonti, F.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Jensen, J. B.

Jeon, H.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

Jokerst, N.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
[CrossRef]

Kim, H. J.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

Kim, J. S.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Kim, S.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

Kim, S. H.

King, O.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Kita, S.

Krauss, T. F.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[CrossRef]

Lambeck, P. V.

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication, and performance of a pigtailed intergrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

Lee, J.

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

Lee, M. R.

Lee, M. W.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Lee, S. K.

Lee, Y. H.

S. H. Kim, J. H. Choi, S. K. Lee, S. H. Kim, S. M. Yang, Y. H. Lee, C. Seassal, P. Regrency, and P. Viktorovitch, “Optofluidic integration of a photonic crystal nanolaser,” Opt. Express 16(9), 6515–6527 (2008).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Li, L. H. H.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Liedberg, B.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface-Plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

Little, B. E.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Loncar, M.

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[CrossRef]

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Luan, L.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
[CrossRef]

Luff, B. J.

Lundstrom, I.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface-Plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

Luther-Davies, B.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Madden, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Mandal, S.

Mirkarimi, L. W.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Mulloni, V.

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Nötzel, R.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Nozaki, K.

Oei, Y. S.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

O'Faolain, L.

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[CrossRef]

Palit, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
[CrossRef]

Park, H. G.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Pavesi, L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

Pedersen, L. H.

Piehler, J.

Popat, K. C.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Qiu, Y. M.

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Rahmani, A.

Regrency, P.

Riboli, F.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Riishede, J.

Royal, M.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
[CrossRef]

Ruan, Y.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Ryu, H. Y.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

Satpati, B.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Schacht, E.

Scherer, A.

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

Schweizer, S. L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Seassal, C.

Sigalas, M.

Smalbrugge, B.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Smit, M. K.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Smith, C. L. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Steel, M. J.

Stenberg, E.

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface-Plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

Tomljenovic-Hanic, S.

S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009).
[CrossRef] [PubMed]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Trampert, A.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Turck, V.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Tyler, T.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
[CrossRef]

Unlu, M. S.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Van, V.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

van Otten, F. W. M.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

van Veldhoven, R. P. J.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Vignolini, S.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Viktorovitch, P.

Wehrspohn, R.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

White, I. M.

Wiersma, D.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

Wiersma, D. S.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Wilkinson, J. S.

Wolter, J. H.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Wu, D. K. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

Yalcin, A.

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

Yang, S. M.

Zabel, T.

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

Zani, M.

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

Appl. Phys. Lett. (8)

V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000).
[CrossRef]

M. Lončar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82(26), 4648–4650 (2003).
[CrossRef]

D. F. Dorfner, T. Hurlimann, T. Zabel, L. H. Frandsen, G. Abstreiter, and J. J. Finley, “Silicon photonic crystal nanostructures for refractive index sensing,” Appl. Phys. Lett. 93(18), 181103 (2008).
[CrossRef]

S. Kim, J. Lee, H. Jeon, and H. J. Kim, “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications,” Appl. Phys. Lett. 94(13), 133503 (2009).
[CrossRef]

A. Di Falco, L. O'Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94(6), 063503 (2009).
[CrossRef]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett. 89(21), 211117 (2006).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett. 91(12), 121103 (2007).
[CrossRef]

F. Intonti, S. Vignolini, F. Riboli, M. Zani, D. S. Wiersma, L. Balet, L. H. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water,” Appl. Phys. Lett. 95(17), 173112 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38(10), 1353–1365 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, and M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006).
[CrossRef]

J. Biophoton. (1)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2(4), 212–226 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self Assembled InAs/InP Quantum Dots for Telecom Applications in the 1.55 µm Wavelength Range: Wavelength Tuning, Stacking, Polarization Control, and Lasing,” Jpn. J. Appl. Phys. 45(No. 8B), 6544–6549 (2006).
[CrossRef]

Nat. Photonics (2)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

M. Loncar, “Molecular sensors: Cavities lead the way,” Nat. Photonics 1(10), 565–567 (2007).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (2)

Sens. Actuators B Chem. (2)

R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication, and performance of a pigtailed intergrated optical phase-modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem. 61(1-3), 100–127 (1999).
[CrossRef]

B. Liedberg, I. Lundstrom, and E. Stenberg, “Principles of biosensing with an extended coupling matrix and surface-Plasmon resonance,” Sens. Actuators B Chem. 11(1-3), 63–72 (1993).
[CrossRef]

Other (1)

F. Schneider, ed., Sugar Analysis-ICUMSA, (International Commission for Uniform Methods of Sugar Analysis, (ICUMSA), 1979, (ICUMSA), 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of hole modifications; SEM images of fabricated (b) H0(rx’,sx;ry’,sy), and (c) H1(r’,s) type of InGaAsP nanocavities. The fabricated structure has r/a of 0.32.

Fig. 2
Fig. 2

(a) Resonant wavelength change of an H1(r’,s) cavity as the sugar concentration in the sugar-water solution increases. (b) 3D FDTD simulation result for the three different infiltration configurations as represented by the sketches: (i) total filling, (ii) surface coverage and hole filling, and (iii) surface coverage of the sugar-water solutions.

Fig. 3
Fig. 3

The sensitivity dependence on the modes’ position in the bandgap before infiltration for (a) dipole and (b) monopole mode in H0(rx’,sx; ry’,sy) and (c) all cavity modes of H1(r’,0) cavities.

Fig. 4
Fig. 4

(a) PL spectrum collected form an H0(rx’, sx; ry’,sy) cavity (b) sensitivity correlation with Q factor of the all modes from all H0 type of cavities.

Tables (1)

Tables Icon

Table 1 Average sensitivities, maximum sensitivities and filling fraction of different mode types with different cavities.

Metrics