Abstract

A novel bi-directional pump geometry that nonlinearly increases the nonlinear optical conversion efficiency of a synchronously pumped optical parametric oscillator (OPO) is reported. This bi-directional pumping method synchronizes the circulating signal pulse with two counter-propagating pump pulses within a linear OPO resonator. Through this pump scheme, an increase in nonlinear optical conversion efficiency of 22% was achieved at the signal wavelength, corresponding to a 95% overall increase in average power. Given an almost unchanged measured pulse duration of 260 fs under optimal performance conditions, this related to a signal wavelength peak power output of 18.8 kW, compared with 10 kW using the traditional single-pass geometry. In this study, a total effective peak intensity pump-field of 7.11 GW/cm2 (corresponding to 3.55 GW/cm2 from each pump beam) was applied to a 3 mm long periodically poled lithium niobate crystal, which had a damage threshold intensity of 4 GW/cm2, without impairing crystal integrity. We therefore prove the application of this novel pump geometry provides opportunities for power-scaling of synchronously pumped OPO systems together with enhanced nonlinear conversion efficiency through relaxed damage threshold intensity conditions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. A. Giordmaine and R. C. Smith, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. 14, 24 (1965).
  2. G. McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4 µm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52(3), 717–724 (2007).
    [CrossRef] [PubMed]
  3. G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” J. Appl. Phys. B 66(5), 653–657 (1998).
    [CrossRef]
  4. S. Chandra, T. H. Allik, G. Catella, R. Utano, and J. A. Hutchinson, “Continuously tunable, 6-14 µm silver-gallium selenide optical parametric oscillator pumped at 1.57 µm,” Appl. Phys. Lett. 71(5), 584 (1997).
    [CrossRef]
  5. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
    [CrossRef]
  6. H. Chen, H. Wang, M. N. Slipchenko, Y.-K. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, “A multimodal platform for nonlinear optical microscopy and microspectroscopy,” Opt. Express 17(3), 1282 (2009).
    [CrossRef] [PubMed]
  7. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
    [CrossRef] [PubMed]
  8. R. W. Boyd, “Nonlinear Optics,” 2nd edition, (Academic Press), (2003), p99–106.
  9. J. Bjorkholm, A. Ashkin, and R. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. 6(12), 797 (1970).
    [CrossRef]
  10. S. T. Yang, R. C. Eckardt, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 12 (1992).
  11. G. D. Boyd and A. Ashkin, “Theory of Parametric Oscillator Threshold with Single-Mode Optical Masers and Observation of Amplification in LiNbO3,” Phys. Rev. 146(1), 187–198 (1966).
    [CrossRef]
  12. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
    [CrossRef]

2009 (1)

2007 (1)

G. McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4 µm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52(3), 717–724 (2007).
[CrossRef] [PubMed]

2006 (1)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

1999 (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

1998 (1)

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” J. Appl. Phys. B 66(5), 653–657 (1998).
[CrossRef]

1997 (1)

S. Chandra, T. H. Allik, G. Catella, R. Utano, and J. A. Hutchinson, “Continuously tunable, 6-14 µm silver-gallium selenide optical parametric oscillator pumped at 1.57 µm,” Appl. Phys. Lett. 71(5), 584 (1997).
[CrossRef]

1992 (1)

S. T. Yang, R. C. Eckardt, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 12 (1992).

1970 (1)

J. Bjorkholm, A. Ashkin, and R. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. 6(12), 797 (1970).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
[CrossRef]

1966 (1)

G. D. Boyd and A. Ashkin, “Theory of Parametric Oscillator Threshold with Single-Mode Optical Masers and Observation of Amplification in LiNbO3,” Phys. Rev. 146(1), 187–198 (1966).
[CrossRef]

1965 (1)

P. J. A. Giordmaine and R. C. Smith, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. 14, 24 (1965).

Allik, T. H.

S. Chandra, T. H. Allik, G. Catella, R. Utano, and J. A. Hutchinson, “Continuously tunable, 6-14 µm silver-gallium selenide optical parametric oscillator pumped at 1.57 µm,” Appl. Phys. Lett. 71(5), 584 (1997).
[CrossRef]

Ashkin, A.

J. Bjorkholm, A. Ashkin, and R. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. 6(12), 797 (1970).
[CrossRef]

G. D. Boyd and A. Ashkin, “Theory of Parametric Oscillator Threshold with Single-Mode Optical Masers and Observation of Amplification in LiNbO3,” Phys. Rev. 146(1), 187–198 (1966).
[CrossRef]

Barth, H. D.

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” J. Appl. Phys. B 66(5), 653–657 (1998).
[CrossRef]

Baxter, G. W.

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” J. Appl. Phys. B 66(5), 653–657 (1998).
[CrossRef]

Beaurepaire, E.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Bjorkholm, J.

J. Bjorkholm, A. Ashkin, and R. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. 6(12), 797 (1970).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
[CrossRef]

G. D. Boyd and A. Ashkin, “Theory of Parametric Oscillator Threshold with Single-Mode Optical Masers and Observation of Amplification in LiNbO3,” Phys. Rev. 146(1), 187–198 (1966).
[CrossRef]

Buhman, K. K.

Byer, R. L.

S. T. Yang, R. C. Eckardt, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 12 (1992).

Catella, G.

S. Chandra, T. H. Allik, G. Catella, R. Utano, and J. A. Hutchinson, “Continuously tunable, 6-14 µm silver-gallium selenide optical parametric oscillator pumped at 1.57 µm,” Appl. Phys. Lett. 71(5), 584 (1997).
[CrossRef]

Chandra, S.

S. Chandra, T. H. Allik, G. Catella, R. Utano, and J. A. Hutchinson, “Continuously tunable, 6-14 µm silver-gallium selenide optical parametric oscillator pumped at 1.57 µm,” Appl. Phys. Lett. 71(5), 584 (1997).
[CrossRef]

Chen, H.

Cheng, J.-X.

Combettes, L.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Débarre, D.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Eckardt, R. C.

S. T. Yang, R. C. Eckardt, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 12 (1992).

Fabre, A.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Giordmaine, P. J. A.

P. J. A. Giordmaine and R. C. Smith, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. 14, 24 (1965).

Hutchinson, J. A.

S. Chandra, T. H. Allik, G. Catella, R. Utano, and J. A. Hutchinson, “Continuously tunable, 6-14 µm silver-gallium selenide optical parametric oscillator pumped at 1.57 µm,” Appl. Phys. Lett. 71(5), 584 (1997).
[CrossRef]

Jung, Y.-K.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
[CrossRef]

McConnell, G.

G. McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4 µm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52(3), 717–724 (2007).
[CrossRef] [PubMed]

Orr, B. J.

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” J. Appl. Phys. B 66(5), 653–657 (1998).
[CrossRef]

Pena, A.-M.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Schanne-Klein, M.-C.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Shi, Y.

Slipchenko, M. N.

Smith, R.

J. Bjorkholm, A. Ashkin, and R. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. 6(12), 797 (1970).
[CrossRef]

Smith, R. C.

P. J. A. Giordmaine and R. C. Smith, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. 14, 24 (1965).

Supatto, W.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Tordjmann, T.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Utano, R.

S. Chandra, T. H. Allik, G. Catella, R. Utano, and J. A. Hutchinson, “Continuously tunable, 6-14 µm silver-gallium selenide optical parametric oscillator pumped at 1.57 µm,” Appl. Phys. Lett. 71(5), 584 (1997).
[CrossRef]

Wang, H.

Yang, S. T.

S. T. Yang, R. C. Eckardt, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 12 (1992).

Zhu, J.

Appl. Phys. Lett. (1)

S. Chandra, T. H. Allik, G. Catella, R. Utano, and J. A. Hutchinson, “Continuously tunable, 6-14 µm silver-gallium selenide optical parametric oscillator pumped at 1.57 µm,” Appl. Phys. Lett. 71(5), 584 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Bjorkholm, A. Ashkin, and R. Smith, “Improvement of optical parametric oscillators by nonresonant pump reflection,” IEEE J. Quantum Electron. 6(12), 797 (1970).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597 (1968).
[CrossRef]

J. Appl. Phys. B (1)

G. W. Baxter, H. D. Barth, and B. J. Orr, “Laser spectroscopy with a pulsed, narrowband infrared optical parametric oscillator system: a practical, modular approach,” J. Appl. Phys. B 66(5), 653–657 (1998).
[CrossRef]

Nat. Methods (1)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

S. T. Yang, R. C. Eckardt, and R. L. Byer, “Continuous-wave singly resonant optical parametric oscillator pumped by a resonantly doubled Nd:YAG laser,” Opt. Lett. 18, 12 (1992).

Phys. Med. Biol. (1)

G. McConnell, “Nonlinear optical microscopy at wavelengths exceeding 1.4 µm using a synchronously pumped femtosecond-pulsed optical parametric oscillator,” Phys. Med. Biol. 52(3), 717–724 (2007).
[CrossRef] [PubMed]

Phys. Rev. (2)

P. J. A. Giordmaine and R. C. Smith, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies,” Phys. Rev. 14, 24 (1965).

G. D. Boyd and A. Ashkin, “Theory of Parametric Oscillator Threshold with Single-Mode Optical Masers and Observation of Amplification in LiNbO3,” Phys. Rev. 146(1), 187–198 (1966).
[CrossRef]

Science (1)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286(5444), 1513–1517 (1999).
[CrossRef] [PubMed]

Other (1)

R. W. Boyd, “Nonlinear Optics,” 2nd edition, (Academic Press), (2003), p99–106.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Bi-directional pumped singly resonant OPO system. Element 1, 13, 14, 15, 16 and 17: highly reflecting at a wavelength of 1.064 µm. E2: faraday isolator. E3, 5 and 18: half wave plates. E4: beam-splitter (50/50 at the pump wavelength). E6, 7, 19 and 20: mode-matching optics. E8. 10, 11 and 12: cavity mirrors and E9: periodically poled lithium niobate crystal.

Fig. 2
Fig. 2

Nonlinear increase in net average output power when forward and backward pump pulses were brought into synchronization with the resonating signal pulse. The x-axis zero point corresponds to exact overlap of the reverse pump and signal wavelength pulses.

Fig. 3
Fig. 3

Average output power at the signal wavelength as a function of cavity length detuning tolerance for the forward, reverse and bi-directional pumping schemes.

Fig. 4
Fig. 4

Pulse duration of the signal wavelength output upon detuning the OPO cavity length.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d E 1 d z = σ 1 2 μ ε 1 E 1 i ω 1 2 μ ε 1 d E 3 E 2 * exp [ i Δ k z ]
d E 2 d z = σ 2 2 μ ε 2 E 2 i ω 2 2 μ ε 2 d E 3 E 1 * exp [ i Δ k z ]
d E 3 d z = σ 3 2 μ ε 3 E 3 i ω 3 2 μ ε 3 d E 1 E 2 exp [ i Δ k z ]

Metrics