Abstract

We theoretically and experimentally analyze unintentional intensity modulation phenomena in two types of all-fiber acousto-optic tunable filters utilizing flexural and torsional acoustic waves. Output filter signal at a resonant wavelength shows time-varying oscillations with even-and odd-order harmonics of applied acoustic frequency, which are explained by two factors of static mode coupling and acoustic back reflection. The magnitudes of static coupling and acoustic reflection in our devices are estimated from the measured first and second harmonic modulation powers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
    [CrossRef]
  2. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
    [CrossRef]
  3. K. J. Lee, D.-I. Yeom, and B. Y. Kim, “Narrowband, polarization insensitive all-fiber acousto-optic tunable bandpass filter,” Opt. Express 15(6), 2987–2992 (2007).
    [CrossRef] [PubMed]
  4. M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
    [CrossRef]
  5. K. J. Lee, H. C. Park, and B. Y. Kim, “Highly efficient all-fiber tunable polarization filter using torsional acoustic wave,” Opt. Express 15(19), 12362–12367 (2007).
    [CrossRef] [PubMed]
  6. H. E. Engan, “Analysis of polarization-mode coupling by acoustic torsional waves in optical fibers,” J. Opt. Soc. Am. A 13(1), 112–118 (1996).
    [CrossRef]
  7. H. E. Engan, D. Östling, P. O. Kval, and J. O. Askautrud, “Wideband operation of horns for excitation of acoustic modes in optical fibers,” Proc. SPIE 2360, 568–571 (1994).
    [CrossRef]
  8. S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, “Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices,” Electron. Lett. 39(18), 1309–1310 (2003).
    [CrossRef]
  9. Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, “Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector,” IEEE Photon. Technol. Lett. 15(5), 718–720 (2003).
    [CrossRef]
  10. J. Zhao, X. Liu, Y. Wang, and Y. Luo, “Bending effect on fiber acousto-optic mode coupling,” Appl. Opt. 44(24), 5101–5104 (2005).
    [CrossRef] [PubMed]
  11. H. C. Park, B. Y. Kim, and H. S. Park, “Apodization of elliptical-core two-mode fiber acousto-optic filter based on acoustic polarization control,” Opt. Lett. 30(23), 3126–3128 (2005).
    [CrossRef] [PubMed]
  12. A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36(14), 1187–1188 (2000).
    [CrossRef]
  13. K. J. Lee, I.-K. Hwang, H. C. Park, and B. Y. Kim, “Axial strain dependence of all-fiber acousto-optic tunable filters,” Opt. Express 17(4), 2348–2357 (2009).
    [CrossRef] [PubMed]
  14. W. V. Sorin, “Methods and apparatus for measuring the power spectrum of optical signals,” US Patent 6801686 (2004).
  15. A. A. Au, Q. Li, C.-H. Lin, and H. P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” IEEE Photon. Technol. Lett. 16(1), 150–152 (2004).
    [CrossRef]
  16. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11(6), 389–391 (1986).
    [CrossRef] [PubMed]

2009

2007

2005

2004

A. A. Au, Q. Li, C.-H. Lin, and H. P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” IEEE Photon. Technol. Lett. 16(1), 150–152 (2004).
[CrossRef]

2003

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, “Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices,” Electron. Lett. 39(18), 1309–1310 (2003).
[CrossRef]

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, “Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector,” IEEE Photon. Technol. Lett. 15(5), 718–720 (2003).
[CrossRef]

2000

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36(14), 1187–1188 (2000).
[CrossRef]

1998

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[CrossRef]

1997

1996

1994

H. E. Engan, D. Östling, P. O. Kval, and J. O. Askautrud, “Wideband operation of horns for excitation of acoustic modes in optical fibers,” Proc. SPIE 2360, 568–571 (1994).
[CrossRef]

1991

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

1986

Askautrud, J. O.

H. E. Engan, D. Östling, P. O. Kval, and J. O. Askautrud, “Wideband operation of horns for excitation of acoustic modes in optical fibers,” Proc. SPIE 2360, 568–571 (1994).
[CrossRef]

Au, A. A.

A. A. Au, Q. Li, C.-H. Lin, and H. P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” IEEE Photon. Technol. Lett. 16(1), 150–152 (2004).
[CrossRef]

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, “Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector,” IEEE Photon. Technol. Lett. 15(5), 718–720 (2003).
[CrossRef]

Berwick, M.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Birks, T. A.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36(14), 1187–1188 (2000).
[CrossRef]

Blake, J. N.

Boimovich, E.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[CrossRef]

Diez, A.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36(14), 1187–1188 (2000).
[CrossRef]

Engan, H. E.

Hwang, I. K.

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, “Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices,” Electron. Lett. 39(18), 1309–1310 (2003).
[CrossRef]

Hwang, I.-K.

Jackson, D. A.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Kakarantzas, G.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36(14), 1187–1188 (2000).
[CrossRef]

Kim, B. Y.

Kim, H. S.

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, “Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices,” Electron. Lett. 39(18), 1309–1310 (2003).
[CrossRef]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
[CrossRef]

Kval, P. O.

H. E. Engan, D. Östling, P. O. Kval, and J. O. Askautrud, “Wideband operation of horns for excitation of acoustic modes in optical fibers,” Proc. SPIE 2360, 568–571 (1994).
[CrossRef]

Kwang, I. K.

Lee, H. P.

A. A. Au, Q. Li, C.-H. Lin, and H. P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” IEEE Photon. Technol. Lett. 16(1), 150–152 (2004).
[CrossRef]

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, “Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector,” IEEE Photon. Technol. Lett. 15(5), 718–720 (2003).
[CrossRef]

Lee, K. J.

Lee, S. S.

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, “Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices,” Electron. Lett. 39(18), 1309–1310 (2003).
[CrossRef]

Li, Q.

A. A. Au, Q. Li, C.-H. Lin, and H. P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” IEEE Photon. Technol. Lett. 16(1), 150–152 (2004).
[CrossRef]

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, “Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector,” IEEE Photon. Technol. Lett. 15(5), 718–720 (2003).
[CrossRef]

Lin, C.-H.

A. A. Au, Q. Li, C.-H. Lin, and H. P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” IEEE Photon. Technol. Lett. 16(1), 150–152 (2004).
[CrossRef]

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, “Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector,” IEEE Photon. Technol. Lett. 15(5), 718–720 (2003).
[CrossRef]

Liu, X.

Luo, Y.

Östling, D.

H. E. Engan, D. Östling, P. O. Kval, and J. O. Askautrud, “Wideband operation of horns for excitation of acoustic modes in optical fibers,” Proc. SPIE 2360, 568–571 (1994).
[CrossRef]

Pannell, C. N.

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Park, H. C.

Park, H. S.

Russell, P. St. J.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36(14), 1187–1188 (2000).
[CrossRef]

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

Sadot, D.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[CrossRef]

Shaw, H. J.

Tomov, I. V.

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, “Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector,” IEEE Photon. Technol. Lett. 15(5), 718–720 (2003).
[CrossRef]

Wang, Y.

Yeom, D.-I.

Yun, S. H.

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, “Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices,” Electron. Lett. 39(18), 1309–1310 (2003).
[CrossRef]

H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
[CrossRef]

Zhao, J.

Appl. Opt.

Electron. Lett.

A. Diez, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, “High strain-induced wavelength tunability in tapered fibre acousto-optic filters,” Electron. Lett. 36(14), 1187–1188 (2000).
[CrossRef]

M. Berwick, C. N. Pannell, P. St. J. Russell, and D. A. Jackson, “Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves,” Electron. Lett. 27(9), 713–715 (1991).
[CrossRef]

S. S. Lee, H. S. Kim, I. K. Hwang, and S. H. Yun, “Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices,” Electron. Lett. 39(18), 1309–1310 (2003).
[CrossRef]

IEEE Commun. Mag.

D. Sadot and E. Boimovich, “Tunable optical filters for dense WDM networks,” IEEE Commun. Mag. 36(12), 50–55 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

Q. Li, A. A. Au, C.-H. Lin, I. V. Tomov, and H. P. Lee, “Performance characteristics of a WDM channel monitor based on an all-fiber AOTF with an on-fiber photodetector,” IEEE Photon. Technol. Lett. 15(5), 718–720 (2003).
[CrossRef]

A. A. Au, Q. Li, C.-H. Lin, and H. P. Lee, “Effects of acoustic reflection on the performance of a cladding-etched all-fiber acoustooptic variable optical attenuator,” IEEE Photon. Technol. Lett. 16(1), 150–152 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Proc. SPIE

H. E. Engan, D. Östling, P. O. Kval, and J. O. Askautrud, “Wideband operation of horns for excitation of acoustic modes in optical fibers,” Proc. SPIE 2360, 568–571 (1994).
[CrossRef]

Other

W. V. Sorin, “Methods and apparatus for measuring the power spectrum of optical signals,” US Patent 6801686 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an experimental setup used to measure the time-dependent intensity modulation in (a) the all-fiber flexural mode AOTF, and (b) the all-fiber torsional mode AOTF. OSC and RFSA denote an oscilloscope and a RF spectrum analyzer, respectively. The inset of Fig. 2(b) shows the cross-section of the HB fiber with elliptical stress member used in this experiment.

Fig. 2
Fig. 2

Measured transmission spectra of (a) the all-fiber flexural mode AOTF at the applied frequency of 1.89 MHz, and (b) the all-fiber torsional mode AOTF at the applied acoustic frequency of 1.332 MHz. A broadband ASE source was used as an incoherent and unpolarized light source, and the output filter spectra were monitored at the optical spectrum analyzer (OSA).

Fig. 3
Fig. 3

(a) Two origins of the time-dependent intensity modulation of output filter signal: (1) static coupling between interacting optical modes in the fiber and (2) back reflection of applied acoustic wave. F- and T-AOTF denote the flexural and the torsional mode AOTF, respectively. (b) AO and static mode coupling between two interacting optical modes. The 1st and the 2nd modes correspond to either two orthogonal polarization modes (for the T-AOTF) or LP01 and LP11 modes (for the F-AOTF), respectively. FW and BW denote the forward and the backward acoustic waves, respectively. (c) Example of output filter signal at the resonant wavelength suffering from intensity modulation.

Fig. 4
Fig. 4

Time-dependent intensity modulations in two types of all-fiber AOTFs. (a) and (c) show the measured RF spectra for the flexural mode AOTF and the torsional mode AOTF, respectively. (b) and (d) show temporal variations of output optical power at the resonant peaks measured at an oscilloscope.

Tables (1)

Tables Icon

Table 1 The AC voltage amplitudes and the corresponding power fluctuations for several damper materials.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

s e f f = s 1 e i θ 1 + s 2 e i θ 2 + s 3 e i θ 3 +
d A 1 ( z ) d z = i κ ( e i ω a t + r e i ω a t + i 2 K L ) A 2 ( z ) e i ( β 1 β 2 K ) z ,
d A 2 ( z ) d z = i κ ( e i ω a t + r e i ω a t i 2 K L ) A 1 ( z ) e i ( β 1 β 2 K ) z .
P 1 ( t ) = | A 1 ( L ) | 2 = cos 2 [ κ L ( 1 + r cos θ ) ] + s sin [ 2 κ L ( 1 + r cos θ ) ] sin ω a t 1 + 2 r cos θ ,
P 2 ( t ) = | A 2 ( L ) | 2 = sin 2 [ κ L ( 1 + r cos θ ) ] s sin [ 2 κ L ( 1 + r cos θ ) ] sin ω a t 1 + 2 r cos θ .
cos 2 [ κ L ( 1 + r cos θ ) ] = 1 2 [ 1 + cos ( 2 κ L ) ( J 0 ( 2 κ L r ) + 2 n = 1 ( 1 ) n J 2 n ( 2 κ L r ) cos ( 2 n θ ) ) sin ( 2 κ L ) ( 2 n = 1 ( 1 ) n J 2 n 1 ( 2 κ L r ) cos [ ( 2 n 1 ) θ ] ) ] ,
sin 2 [ κ L ( 1 + r cos θ ) ] = 1 2 [ 1 cos ( 2 κ L ) ( J 0 ( 2 κ L r ) + 2 n = 1 ( 1 ) n J 2 n ( 2 κ L r ) cos ( 2 n θ ) ) + sin ( 2 κ L ) ( 2 n = 1 ( 1 ) n J 2 n 1 ( 2 κ L r ) cos [ ( 2 n 1 ) θ ] ) ] .
P 1 ( t ) = sin 2 ( κ L ) s sin ( 2 κ L ) sin ω a t + sin ( 2 κ L ) κ L r cos ( 2 ω a t 2 K L ) + .
P 2 ( t ) = cos 2 ( κ L ) + s sin ( 2 κ L ) sin ω a t sin ( 2 κ L ) κ L r cos ( 2 ω a t 2 K L ) + .
sin 2 ( κ L ) = 0.1 (10-dB notch depth for the flexural mode AOTF),
cos 2 ( κ L ) = 0.5 (3-dB bandpass peak for the torsional mode AOTF),

Metrics