Abstract

We have developed a non-invasive photoacoustic ophthalmoscopy (PAOM) for in vivo retinal imaging. PAOM detects the photoacoustic signal induced by pulsed laser light shined onto the retina. By using a stationary ultrasonic transducer in contact with the eyelids and scanning only the laser light across the retina, PAOM provides volumetric imaging of the retinal micro-vasculature and retinal pigment epithelium at a high speed. For B-scan frames containing 256 A-lines, the current PAOM has a frame rate of 93 Hz, which is comparable with state-of-the-art commercial spectral-domain optical coherence tomography (SD-OCT). By integrating PAOM with SD-OCT, we further achieved OCT-guided PAOM, which can provide multi-modal retinal imaging simultaneously. The capabilities of this novel technology were demonstrated by imaging both the microanatomy and microvasculature of the rat retina in vivo.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, “Monochromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 5, 861–868 (1977).
  2. G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
    [CrossRef] [PubMed]
  3. R. H. Webb ANDG. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng, BME 28, 488–492 (1981).
    [CrossRef]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  6. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  7. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367 .
    [CrossRef] [PubMed]
  8. M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
    [CrossRef] [PubMed]
  9. A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthal. Surg. Las. Im. 34, 152–164 (2003).
  10. M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48(5), 592–598 (2001).
    [CrossRef] [PubMed]
  11. J. Cai and M. Boulton, “The pathogenesis of diabetic retinopathy: old concepts and new questions,” Eye (Lond) 16(3), 242–260 (2002).
  12. O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85(3), 845–881 (2005).
    [CrossRef] [PubMed]
  13. A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
    [CrossRef] [PubMed]
  14. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2(4), 797–804 (2007).
    [CrossRef] [PubMed]
  15. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  16. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  17. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  18. S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 34(19), 2961–2963 (2009).
    [CrossRef] [PubMed]
  19. H. F. Zhang, J. Wang, Q. Wei, T. Liu, S. Jiao, and C. A. Puliafito, “Collecting back-reflected photons in photoacoustic microscopy,” Opt. Express 18(2), 1278–1282 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-2-1278 .
    [CrossRef] [PubMed]
  20. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444 .
    [CrossRef] [PubMed]
  21. H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
    [CrossRef] [PubMed]
  22. American National Standard for Safe Use of Lasers ANSI Z136, 1–2007. (American National Standards Institute Inc., New York, NY, 2007).
  23. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
    [CrossRef]

2010

2009

2008

2007

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2(4), 797–804 (2007).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

2006

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2005

2004

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367 .
[CrossRef] [PubMed]

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[CrossRef] [PubMed]

2003

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthal. Surg. Las. Im. 34, 152–164 (2003).

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

J. Cai and M. Boulton, “The pathogenesis of diabetic retinopathy: old concepts and new questions,” Eye (Lond) 16(3), 242–260 (2002).

2001

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48(5), 592–598 (2001).
[CrossRef] [PubMed]

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1981

R. H. Webb ANDG. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng, BME 28, 488–492 (1981).
[CrossRef]

R. H. Webb ANDG. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng, BME 28, 488–492 (1981).
[CrossRef]

1977

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, “Monochromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 5, 861–868 (1977).

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Bird, A. C.

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

Boulton, M.

J. Cai and M. Boulton, “The pathogenesis of diabetic retinopathy: old concepts and new questions,” Eye (Lond) 16(3), 242–260 (2002).

Bouma, B. E.

Cai, J.

J. Cai and M. Boulton, “The pathogenesis of diabetic retinopathy: old concepts and new questions,” Eye (Lond) 16(3), 242–260 (2002).

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

de Boer, J. F.

Delori, F. C.

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, “Monochromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 5, 861–868 (1977).

Dinn, R. B.

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthal. Surg. Las. Im. 34, 152–164 (2003).

Duan, Y.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fitzke, F. W.

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Francisco, R.

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, “Monochromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 5, 861–868 (1977).

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gragoudas, E. S.

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, “Monochromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 5, 861–868 (1977).

Gregori, G.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-444 .
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hackam, A.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Haller, J. A.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[CrossRef] [PubMed]

Hammer, M.

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48(5), 592–598 (2001).
[CrossRef] [PubMed]

Harris, A.

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthal. Surg. Las. Im. 34, 152–164 (2003).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Hu, S.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, X.

Hughes, G. W.

R. H. Webb ANDG. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng, BME 28, 488–492 (1981).
[CrossRef]

Jiao, S.

Jockovich, M. E.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Kagemann, L.

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthal. Surg. Las. Im. 34, 152–164 (2003).

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Knighton, R.

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Leistritz, L.

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48(5), 592–598 (2001).
[CrossRef] [PubMed]

Leistritz, S.

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48(5), 592–598 (2001).
[CrossRef] [PubMed]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, T.

Maguire, A. M.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[CrossRef] [PubMed]

Marcus, D.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[CrossRef] [PubMed]

Maslov, K.

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

McDonald, H. R.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[CrossRef] [PubMed]

Nassif, N. A.

Park, B. H.

Pierce, M. C.

Pruett, R. C.

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, “Monochromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 5, 861–868 (1977).

Puliafito, C.

Puliafito, C. A.

H. F. Zhang, J. Wang, Q. Wei, T. Liu, S. Jiao, and C. A. Puliafito, “Collecting back-reflected photons in photoacoustic microscopy,” Opt. Express 18(2), 1278–1282 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-2-1278 .
[CrossRef] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
[CrossRef] [PubMed]

S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 34(19), 2961–2963 (2009).
[CrossRef] [PubMed]

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rechtman, E.

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthal. Surg. Las. Im. 34, 152–164 (2003).

Ruggeri, M.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schweitzer, D.

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48(5), 592–598 (2001).
[CrossRef] [PubMed]

Scott, I. U.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[CrossRef] [PubMed]

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Strauss, O.

O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85(3), 845–881 (2005).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

von Rückmann, A.

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

Wang, J.

Wang, L. V.

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Webb, R. H.

R. H. Webb ANDG. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng, BME 28, 488–492 (1981).
[CrossRef]

Wehbe, H.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

Wei, Q.

Williams, G. A.

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Xie, Z.

Yun, S. H.

Zhang, H. F.

H. F. Zhang, J. Wang, Q. Wei, T. Liu, S. Jiao, and C. A. Puliafito, “Collecting back-reflected photons in photoacoustic microscopy,” Opt. Express 18(2), 1278–1282 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-2-1278 .
[CrossRef] [PubMed]

S. Jiao, Z. Xie, H. F. Zhang, and C. A. Puliafito, “Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography,” Opt. Lett. 34(19), 2961–2963 (2009).
[CrossRef] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90(5), 053901 (2007).
[CrossRef]

Arch. Ophthalmol.

F. C. Delori, E. S. Gragoudas, R. Francisco, and R. C. Pruett, “Monochromatic Ophthalmoscopy and Fundus Photography,” Arch. Ophthalmol. 5, 861–868 (1977).

Br. J. Ophthalmol.

A. von Rückmann, F. W. Fitzke, and A. C. Bird, “Distribution of fundus autofluorescence with a scanning laser ophthalmoscope,” Br. J. Ophthalmol. 79(5), 407–412 (1995).
[CrossRef] [PubMed]

Eye (Lond)

J. Cai and M. Boulton, “The pathogenesis of diabetic retinopathy: old concepts and new questions,” Eye (Lond) 16(3), 242–260 (2002).

IEEE Trans. Biomed. Eng, BME

R. H. Webb ANDG. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng, BME 28, 488–492 (1981).
[CrossRef]

IEEE Trans. Biomed. Eng.

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48(5), 592–598 (2001).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci.

M. Ruggeri, H. Wehbe, S. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 48(4), 1808–1814 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “Automatic algorithm for skin profile detection in photoacoustic microscopy,” J. Biomed. Opt. 14(2), 024050 (2009).
[CrossRef] [PubMed]

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Protoc.

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc. 2(4), 797–804 (2007).
[CrossRef] [PubMed]

Ophthal. Surg. Las. Im.

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthal. Surg. Las. Im. 34, 152–164 (2003).

Ophthalmology

G. A. Williams, I. U. Scott, J. A. Haller, A. M. Maguire, D. Marcus, and H. R. McDonald; “Single-field fundus photography for diabetic retinopathy screening: a report by the American Academy of Ophthalmology,” Ophthalmology 111(5), 1055–1062 (2004).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Physiol. Rev.

O. Strauss, “The retinal pigment epithelium in visual function,” Physiol. Rev. 85(3), 845–881 (2005).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

American National Standard for Safe Use of Lasers ANSI Z136, 1–2007. (American National Standards Institute Inc., New York, NY, 2007).

Supplementary Material (1)

» Media 1: AVI (46835 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental system of the OCT-guided PAOM. (a) Schematic of the OCT-guided PAOM. (b) Illustration of the optical beam delivery to the retina and the position of the ultrasonic transducer. The light delivery systems were built on a slit-lamp bio-microscope. The two imaging subsystems are synchronized by the PAOM laser pulses detected by photodiode Pd1. SLD: superluminescent diode; PC: polarization controller; Pd: photodiode; FOV: field of view; UT: ultrasonic transducer.

Fig. 2
Fig. 2

Comparison of OCT and PAOM images acquired simultaneously in vivo. (a) PAOM B-scan image in pseudocolors; (b) OCT B-scan image; (c) MAP image of the PAOM data set. Bar: 100 µm.

Fig. 3
Fig. 3

Volumetric visualization and segmentation of PAOM image. (a) (Media 1) showing the imaged retinal structure by PAOM. (b) Segmented PAOM images of the retinal blood vessels. (c) Pseudo-colored PAOM images of the retinal vessels and RPE.

Fig. 4
Fig. 4

(a) Montage of two PAOM images of the same rat retina. (b) OCT fundus image of the same retina. One of the two PAOM images has a FOV on the superior retina and the other has a FOV on the inferior retina. Bar: 100

Metrics