Abstract

We report astonishingly high transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected split ring resonators in the vicinity of the aperture. We carried out numerical simulations that are consistent with our experimental conclusions. We experimentally show higher than 70,000-fold extraordinary transmission through a deep subwavelength aperture with an electrical size of λ/31×λ/12 (width × length), in terms of the operational wavelength. We discuss the physical origins of the phenomenon. Our numerical results predict that even more improvements of the enhancement factors are attainable. Theoretically, the approach opens up the possibility for achieving very large enhancement factors by overcoming the physical limitations and thereby minimizes the dependence on the aperture geometries.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
    [CrossRef]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  3. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [CrossRef]
  4. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  5. J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
    [CrossRef]
  6. K. G. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
    [CrossRef]
  7. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14(14), 6400–6413 (2006).
    [CrossRef]
  8. F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14(1), 7–18 (2006).
    [CrossRef]
  9. F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
    [CrossRef]
  10. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
    [CrossRef]
  11. A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26(7), 450–452 (2001).
    [CrossRef]
  12. Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
    [CrossRef]
  13. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [CrossRef]
  14. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef]
  15. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
    [CrossRef]
  16. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [CrossRef]
  17. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10(25), 1475–1484 (2002).
  18. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12(12), 2631–2648 (2004).
    [CrossRef]
  19. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
    [CrossRef]
  20. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
    [CrossRef]
  21. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
    [CrossRef]
  22. F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
    [CrossRef]
  23. H. Caglayan, I. Bulu, and E. Ozbay, “Plasmonic structures with extraordinary transmission and highly directional beaming properties,” Microw. Opt. Technol. Lett. 48(12), 2491–2496 (2006).
    [CrossRef]
  24. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
    [CrossRef]
  25. S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. Pure Appl. Opt. 7(2), S159–S164 (2005).
    [CrossRef]
  26. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
    [CrossRef]
  27. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef]
  28. G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87(19), 191109 (2005).
    [CrossRef]
  29. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005).
    [CrossRef]
  30. C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
    [CrossRef]
  31. X. Luo and T. Ishihara, “Sub-100-nm photolithography based on plasmon resonance,” Jpn. J. Appl. Phys. 43(No. 6B), 4017–4021 (2004).
    [CrossRef]
  32. D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
    [CrossRef]
  33. P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
    [CrossRef]
  34. S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
    [CrossRef]
  35. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
    [CrossRef]
  36. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef]
  37. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt. 7(2), S97–S101 (2005).
    [CrossRef]
  38. N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007).
    [CrossRef]
  39. A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
    [CrossRef]
  40. R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag. 51(10), 2572–2581 (2003).
    [CrossRef]
  41. K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
    [CrossRef]
  42. A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
    [CrossRef]
  43. K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture,” Opt. Express 17(8), 5933–5943 (2009).
    [CrossRef]
  44. F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. Pure Appl. Opt. 11(11), 114029 (2009).
    [CrossRef]

2009

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. Pure Appl. Opt. 11(11), 114029 (2009).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture,” Opt. Express 17(8), 5933–5943 (2009).
[CrossRef]

2007

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef]

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007).
[CrossRef]

2006

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Plasmonic structures with extraordinary transmission and highly directional beaming properties,” Microw. Opt. Technol. Lett. 48(12), 2491–2496 (2006).
[CrossRef]

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

F. J. García de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, “Site and lattice resonances in metallic hole arrays,” Opt. Express 14(1), 7–18 (2006).
[CrossRef]

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express 14(14), 6400–6413 (2006).
[CrossRef]

2005

F. Marquier, J.-J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13(1), 70–76 (2005).
[CrossRef]

K. G. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. Pure Appl. Opt. 7(2), S159–S164 (2005).
[CrossRef]

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87(19), 191109 (2005).
[CrossRef]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005).
[CrossRef]

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[CrossRef]

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

2004

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

X. Luo and T. Ishihara, “Sub-100-nm photolithography based on plasmon resonance,” Jpn. J. Appl. Phys. 43(No. 6B), 4017–4021 (2004).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef]

A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Transmission of light through small elliptical apertures,” Opt. Express 12(12), 2631–2648 (2004).
[CrossRef]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef]

2003

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag. 51(10), 2572–2581 (2003).
[CrossRef]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10(25), 1475–1484 (2002).

2001

A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26(7), 450–452 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef]

Akarca-Biyikli, S. S.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. Pure Appl. Opt. 7(2), S159–S164 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[CrossRef]

Alici, K. B.

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Alu, A.

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[CrossRef]

Aydin, K.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Bilotti, F.

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. Pure Appl. Opt. 11(11), 114029 (2009).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture,” Opt. Express 17(8), 5933–5943 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[CrossRef]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Bonod, N.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, “Plasmonic structures with extraordinary transmission and highly directional beaming properties,” Microw. Opt. Technol. Lett. 48(12), 2491–2496 (2006).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. Pure Appl. Opt. 7(2), S159–S164 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[CrossRef]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, “Plasmonic structures with extraordinary transmission and highly directional beaming properties,” Microw. Opt. Technol. Lett. 48(12), 2491–2496 (2006).
[CrossRef]

Cakmak, A. O.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

Campillo, I.

Capoulade, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

Chang, S.-H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Chen, S. C.

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[CrossRef]

Coe, J. V.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

Colak, E.

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

Collin, S.

Degiron, A.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

Dintinger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef]

Dogariu, A.

Dolado, J. S.

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Ebbesen, T. W.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express 12(16), 3694–3700 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26(7), 450–452 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Economou, E. N.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007).
[CrossRef]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Engheta, N.

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[CrossRef]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005).
[CrossRef]

Garcia de Abajo, F. J.

García de Abajo, F. J.

Garcia-Vidal, F. J.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

Gbur, G.

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87(19), 191109 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Genet, C.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gray, S. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Greffet, J.-J.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Halleck, A. E.

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[CrossRef]

Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Huang, C.-

Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005).
[CrossRef]

Ishihara, T.

X. Luo and T. Ishihara, “Sub-100-nm photolithography based on plasmon resonance,” Jpn. J. Appl. Phys. 43(No. 6B), 4017–4021 (2004).
[CrossRef]

Kafesaki, M.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007).
[CrossRef]

Kamaev, V.

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[CrossRef]

Katsarakis, N.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Larson, D. N.

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[CrossRef]

Lee, K. G.

K. G. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[CrossRef]

Lenne, P.-F.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

Lezec, H. J.

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26(7), 450–452 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, J.-

Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Li, Z.

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

Liu, C.

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, “Sub-100-nm photolithography based on plasmon resonance,” Jpn. J. Appl. Phys. 43(No. 6B), 4017–4021 (2004).
[CrossRef]

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005).
[CrossRef]

Mansuripur, M.

Marques, R.

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag. 51(10), 2572–2581 (2003).
[CrossRef]

Marquier, F.

Martel, J.

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag. 51(10), 2572–2581 (2003).
[CrossRef]

Martin-Moreno, L.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef]

Medina, F.

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag. 51(10), 2572–2581 (2003).
[CrossRef]

Mesa, F.

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag. 51(10), 2572–2581 (2003).
[CrossRef]

Moloney, J. V.

Moreno, E.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005).
[CrossRef]

Ozbay, E.

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture,” Opt. Express 17(8), 5933–5943 (2009).
[CrossRef]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. Pure Appl. Opt. 11(11), 114029 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, “Plasmonic structures with extraordinary transmission and highly directional beaming properties,” Microw. Opt. Technol. Lett. 48(12), 2491–2496 (2006).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. Pure Appl. Opt. 7(2), S159–S164 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[CrossRef]

Pardo, F.

Park, Q.-H.

K. G. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[CrossRef]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

Pelouard, J. L.

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Popov, E.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Przybilla, F.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

Rigneault, H.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

Rodriguez, K. R.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

Rogers, T. M.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Sáenz, J. J.

Sahin, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

Schatz, G. C.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87(19), 191109 (2005).
[CrossRef]

Scorrano, L.

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. Pure Appl. Opt. 11(11), 114029 (2009).
[CrossRef]

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef]

Shah, S.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[CrossRef]

Soukoulis, C. M.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007).
[CrossRef]

Stafford, A. D.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

Stark, P. R. H.

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[CrossRef]

Teeters-Kennedy, S.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

A. Dogariu, T. Thio, L. J. Wang, T. W. Ebbesen, and H. J. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26(7), 450–452 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tsiapa, I.

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007).
[CrossRef]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef]

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[CrossRef]

Vegni, L.

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. Pure Appl. Opt. 11(11), 114029 (2009).
[CrossRef]

K. B. Alici, F. Bilotti, L. Vegni, and E. Ozbay, “Optimization and tunability of deep subwavelength resonators for metamaterial applications: complete enhanced transmission through a subwavelength aperture,” Opt. Express 17(8), 5933–5943 (2009).
[CrossRef]

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[CrossRef]

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87(19), 191109 (2005).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Wang, L. J.

Wang, Q.-

Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Wenger, J.

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

Williams, S. M.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xie, Y.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

Zakharian, A. R.

Zhang, C.

Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Zhu, Y.-y.

Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

Appl. Phys. Lett.

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture,” Appl. Phys. Lett. 85(7), 1098–1100 (2004).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003).
[CrossRef]

G. Gbur, H. F. Schouten, and T. D. Visser, “Achieving superresolution in near-field optical data readout systems using surface plasmons,” Appl. Phys. Lett. 87(19), 191109 (2005).
[CrossRef]

D. B. Shao and S. C. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86(25), 253107 (2005).
[CrossRef]

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86(14), 143501 (2005).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” Appl. Phys. Lett. 95(5), 052103 (2009).
[CrossRef]

Q.- Wang, J.- Li, C.- Huang, C. Zhang, and Y.-y. Zhu, “Enhanced optical transmission through metal films with rotation-symmetrical hole arrays,” Appl. Phys. Lett. 87(9), 091105 (2005).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[CrossRef]

IEEE Trans. Antenn. Propag.

A. Alu, F. Bilotti, N. Engheta, and L. Vegni, “Metamaterial covers over a small aperture,” IEEE Trans. Antenn. Propag. 54(6), 1632–1643 (2006).
[CrossRef]

R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag. 51(10), 2572–2581 (2003).
[CrossRef]

J. Opt. Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, “Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies,” J. Opt. Pure Appl. Opt. 7(2), S159–S164 (2005).
[CrossRef]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. Pure Appl. Opt. 11(11), 114029 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44(12), 364–366 (2005).
[CrossRef]

X. Luo and T. Ishihara, “Sub-100-nm photolithography based on plasmon resonance,” Jpn. J. Appl. Phys. 43(No. 6B), 4017–4021 (2004).
[CrossRef]

Methods

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[CrossRef]

Microw. Opt. Technol. Lett.

H. Caglayan, I. Bulu, and E. Ozbay, “Plasmonic structures with extraordinary transmission and highly directional beaming properties,” Microw. Opt. Technol. Lett. 48(12), 2491–2496 (2006).
[CrossRef]

Nanotechnology

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[CrossRef]

Nat. Phys.

J. Bravo-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nat. Phys. 2(2), 120–123 (2006).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446(7135), 517–521 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Photon. Nanostructures

N. Katsarakis, M. Kafesaki, I. Tsiapa, E. N. Economou, and C. M. Soukoulis, “High transmittance left-handed materials involving symmetric split-ring resonators,” Photon. Nanostructures 5(4), 149–155 (2007).
[CrossRef]

Phys. Rev.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. B

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[CrossRef]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102(1), 013904 (2009).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

K. G. Lee and Q.-H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[CrossRef]

H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P.-F. Lenne, “Enhancement of single-molecule fluorescence detection in subwavelength apertures,” Phys. Rev. Lett. 95(11), 117401 (2005).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef]

Supplementary Material (7)

» Media 1: MPG (3350 KB)     
» Media 2: MPG (2202 KB)     
» Media 3: MPG (3342 KB)     
» Media 4: MPG (2008 KB)     
» Media 5: MPG (1230 KB)     
» Media 6: MPG (1242 KB)     
» Media 7: MPG (1235 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics