Abstract

We study the performance of various binary and nonbinary modulation methods applied to coherent laser communication through the turbulent atmosphere. We compare the spectral efficiencies and SNR efficiencies of complex modulations, and consider options for atmospheric compensation, including phase correction and diversity combining techniques. Our analysis shows that high communication rates require receivers with good sensitivity along with some technique to mitigate the effect of atmospheric fading.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
    [CrossRef]
  2. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66(3), 207–211 (1976).
    [CrossRef]
  3. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  4. D. L. Fried, “Atmospheric modulation noise in an optical heterodyne receiver,” IEEE J. Quantum Electron. 3(6), 213–221 (1967).
    [CrossRef]
  5. A. Belmonte and J. Khan, “Performance of synchronous optical receivers using atmospheric compensation techniques,” Opt. Express 16(18), 14151–14162 (2008).
    [CrossRef]
  6. A. Belmonte and J. M. Kahn, “Capacity of coherent free-space optical links using diversity-combining techniques,” Opt. Express 17(15), 12601–12611 (2009).
    [CrossRef]
  7. J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Ben Roberts & Company, 2007).
  8. J. D. Parsons, “Diversity techniques in communications receivers,” in Advanced Signal Processing, D. A. Creasey, ed. (Peregrinus, 1985), Chap. 6.
  9. J. G. Proakis, and M. Salehi, Digital Communications, (Mc Graw-Hill, 2007).
  10. M. K. Simon and M.-S. Alouini, “A unified approach to the performance analysis of digital communications over generalized fading channels,” IEEE Proc. 86(9), 1860–1877 (1998).
    [CrossRef]
  11. A. Goldsmith, Wireless Communications (Cambridge University Press, 2005)
  12. J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
    [CrossRef]

2009 (1)

2008 (1)

2004 (1)

J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

1998 (1)

M. K. Simon and M.-S. Alouini, “A unified approach to the performance analysis of digital communications over generalized fading channels,” IEEE Proc. 86(9), 1860–1877 (1998).
[CrossRef]

1976 (1)

1975 (1)

J. W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[CrossRef]

1967 (1)

D. L. Fried, “Atmospheric modulation noise in an optical heterodyne receiver,” IEEE J. Quantum Electron. 3(6), 213–221 (1967).
[CrossRef]

Alouini, M.-S.

M. K. Simon and M.-S. Alouini, “A unified approach to the performance analysis of digital communications over generalized fading channels,” IEEE Proc. 86(9), 1860–1877 (1998).
[CrossRef]

Belmonte, A.

Fried, D. L.

D. L. Fried, “Atmospheric modulation noise in an optical heterodyne receiver,” IEEE J. Quantum Electron. 3(6), 213–221 (1967).
[CrossRef]

Ho, K.-P.

J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

Kahn, J.

J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

Kahn, J. M.

Khan, J.

Noll, R. J.

Simon, M. K.

M. K. Simon and M.-S. Alouini, “A unified approach to the performance analysis of digital communications over generalized fading channels,” IEEE Proc. 86(9), 1860–1877 (1998).
[CrossRef]

Speck, J. P.

J. W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[CrossRef]

Strohbehn, J. W.

J. W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[CrossRef]

Wang, T.

J. W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. L. Fried, “Atmospheric modulation noise in an optical heterodyne receiver,” IEEE J. Quantum Electron. 3(6), 213–221 (1967).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kahn and K.-P. Ho, “Spectral efficiency limits and modulation/detection techniques for DWDM systems,” IEEE J. Sel. Top. Quantum Electron. 10(2), 259–272 (2004).
[CrossRef]

IEEE Proc. (1)

M. K. Simon and M.-S. Alouini, “A unified approach to the performance analysis of digital communications over generalized fading channels,” IEEE Proc. 86(9), 1860–1877 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Radio Sci. (1)

J. W. Strohbehn, T. Wang, and J. P. Speck, “On the probability distribution of line-of-sight fluctuations of optical signals,” Radio Sci. 10(1), 59–70 (1975).
[CrossRef]

Other (5)

A. Goldsmith, Wireless Communications (Cambridge University Press, 2005)

J. W. Goodman, Speckle Phenomena in Optics. Theory and Applications (Ben Roberts & Company, 2007).

J. D. Parsons, “Diversity techniques in communications receivers,” in Advanced Signal Processing, D. A. Creasey, ed. (Peregrinus, 1985), Chap. 6.

J. G. Proakis, and M. Salehi, Digital Communications, (Mc Graw-Hill, 2007).

M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics