Abstract

Doppler optical coherence tomography (OCT) is a technique to image tissue morphology and to measure flow in turbid media. In its most basic form, it is based on single (Mie) scattering. However, for highly scattering and dense media multiple and concentration dependent scattering can occur. For Intralipid solutions with varying scattering strength, the effect of multiple and dependent scattering on the OCT signal attenuation and Doppler flow is investigated. We observe a non-linear increase in the OCT signal attenuation rate and an increasingly more distorted Doppler OCT flow profile with increasing Intralipid concentration. The Doppler OCT attenuation and flow measurements are compared to Monte Carlo simulations and good agreement is observed. Based on this comparison, we determine that the single scattering attenuation coefficient µs is 15% higher than the measured OCT signal attenuation rate. This effect and the distortion of the measured flow profile are caused by multiple scattering. The non-linear behavior of the single scattering attenuation coefficient with Intralipid concentration is attributed to concentration dependent scattering.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  2. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [CrossRef] [PubMed]
  3. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484 (2000).
    [CrossRef]
  4. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009).
    [CrossRef] [PubMed]
  5. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
    [CrossRef] [PubMed]
  6. H. T. Yura, L. Thrane, and P. E. Andersen, “Analysis of multiple scattering effects in optical Doppler tomography,” Proc. SPIE 5861, 5861B–1 (2005).
  7. A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Monte Carlo simulation of an optical coherence Doppler tomography signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile,” Quantum Electron. 35(2), 135–139 (2005).
    [CrossRef]
  8. J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Appl. Phys. D:. 38(15), 2597–2605 (2005).
    [CrossRef]
  9. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24(22), 1584–1586 (1999).
    [CrossRef]
  10. G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Complex Media 5(4), 413–426 (1995).
  11. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003).
    [CrossRef] [PubMed]
  12. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
    [CrossRef]
  13. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507 (1991).
    [CrossRef] [PubMed]
  14. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907 (2008).
    [CrossRef] [PubMed]
  15. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
    [CrossRef] [PubMed]
  16. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107 (1974).
    [CrossRef]
  17. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
    [CrossRef]
  18. E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A 156(1), 8–13 (2009).
    [CrossRef]
  19. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
    [CrossRef] [PubMed]
  20. A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomography signal,” Quantum Electron. 35(11), 1079–1082 (2005).
    [CrossRef]
  21. H. Ren, T. Sun, D. J. MacDonald, M. J. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical Doppler tomography,” Opt. Lett. 31(7), 927–929 (2006).
    [CrossRef] [PubMed]
  22. A. Ishimaru and Y. Kuga, “Attenuation constant of a coherent field in a dense distribution of particles,” J. Opt. Soc. Am. 72(10), 1317 (1982).
    [CrossRef]
  23. B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” Int. J. Thermophys. 1(1), 63–68 (1987).
    [CrossRef]

2009

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A 156(1), 8–13 (2009).
[CrossRef]

D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009).
[CrossRef] [PubMed]

2008

2006

2005

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomography signal,” Quantum Electron. 35(11), 1079–1082 (2005).
[CrossRef]

H. T. Yura, L. Thrane, and P. E. Andersen, “Analysis of multiple scattering effects in optical Doppler tomography,” Proc. SPIE 5861, 5861B–1 (2005).

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Monte Carlo simulation of an optical coherence Doppler tomography signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile,” Quantum Electron. 35(2), 135–139 (2005).
[CrossRef]

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Appl. Phys. D:. 38(15), 2597–2605 (2005).
[CrossRef]

2004

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
[CrossRef] [PubMed]

2003

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[CrossRef]

2002

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

2000

1999

1997

1995

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Complex Media 5(4), 413–426 (1995).

1994

1991

1987

B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” Int. J. Thermophys. 1(1), 63–68 (1987).
[CrossRef]

1982

1974

Aalders, M. C.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[CrossRef]

Aalders, M. C. G.

Andersen, P. E.

H. T. Yura, L. Thrane, and P. E. Andersen, “Analysis of multiple scattering effects in optical Doppler tomography,” Proc. SPIE 5861, 5861B–1 (2005).

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484 (2000).
[CrossRef]

Bachman, M.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Bajraszewski, T.

Bykov, A. V.

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Monte Carlo simulation of an optical coherence Doppler tomography signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile,” Quantum Electron. 35(2), 135–139 (2005).
[CrossRef]

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomography signal,” Quantum Electron. 35(11), 1079–1082 (2005).
[CrossRef]

Chen, Z.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
[CrossRef] [PubMed]

Cobb, M. J.

Cuevas, M.

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A 156(1), 8–13 (2009).
[CrossRef]

Dave, D.

Del Bianco, S.

Drolen, B. L.

B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” Int. J. Thermophys. 1(1), 63–68 (1987).
[CrossRef]

Faber, D. J.

Foschum, F.

Fricke, J.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Complex Media 5(4), 413–426 (1995).

Fujimoto, J. G.

Göbel, G.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Complex Media 5(4), 413–426 (1995).

Guo, S.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Hee, M. R.

Ishimaru, A.

Izatt, J. A.

Kienle, A.

Kirillin, M. Yu.

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomography signal,” Quantum Electron. 35(11), 1079–1082 (2005).
[CrossRef]

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Monte Carlo simulation of an optical coherence Doppler tomography signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile,” Quantum Electron. 35(2), 135–139 (2005).
[CrossRef]

Koch, E.

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A 156(1), 8–13 (2009).
[CrossRef]

Kowalczyk, A.

Kuga, Y.

Kuhn, J.

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Complex Media 5(4), 413–426 (1995).

Kulkarni, M. D.

Li, G. P.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Li, X.

MacDonald, D. J.

Martelli, F.

Matcher, S. J.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Appl. Phys. D:. 38(15), 2597–2605 (2005).
[CrossRef]

Michels, R.

Milner, T. E.

Moes, C. J. M.

Moger, J.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Appl. Phys. D:. 38(15), 2597–2605 (2005).
[CrossRef]

Nelson, J. S.

Owen, G. M.

Palmer, K. F.

Prahl, S. A.

Priezzhev, A. V.

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomography signal,” Quantum Electron. 35(11), 1079–1082 (2005).
[CrossRef]

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Monte Carlo simulation of an optical coherence Doppler tomography signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile,” Quantum Electron. 35(2), 135–139 (2005).
[CrossRef]

Ren, H.

Rollins, A. M.

Shore, A.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Appl. Phys. D:. 38(15), 2597–2605 (2005).
[CrossRef]

Sun, T.

Swanson, E. A.

Szkulmowska, A.

Szkulmowski, M.

Thrane, L.

H. T. Yura, L. Thrane, and P. E. Andersen, “Analysis of multiple scattering effects in optical Doppler tomography,” Proc. SPIE 5861, 5861B–1 (2005).

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484 (2000).
[CrossRef]

Tien, C. L.

B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” Int. J. Thermophys. 1(1), 63–68 (1987).
[CrossRef]

van der Meer, F. J.

van Gemert, M. J. C.

van Leeuwen, T. G.

van Marle, J.

van Staveren, H. J.

Walther, J.

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A 156(1), 8–13 (2009).
[CrossRef]

Wang, L.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Wang, R. K.

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Wang, Y.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Williams, D.

Winlove, C. P.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Appl. Phys. D:. 38(15), 2597–2605 (2005).
[CrossRef]

Wojtkowski, M.

Yazdanfar, S.

Yura, H. T.

H. T. Yura, L. Thrane, and P. E. Andersen, “Analysis of multiple scattering effects in optical Doppler tomography,” Proc. SPIE 5861, 5861B–1 (2005).

L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484 (2000).
[CrossRef]

Zaccanti, G.

Zhang, J.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[CrossRef]

Int. J. Thermophys.

B. L. Drolen and C. L. Tien, “Independent and dependent scattering in packed-sphere systems,” Int. J. Thermophys. 1(1), 63–68 (1987).
[CrossRef]

J. Appl. Phys. D:.

J. Moger, S. J. Matcher, C. P. Winlove, and A. Shore, “The effect of multiple scattering on velocity profiles measured using Doppler OCT,” J. Appl. Phys. D:. 38(15), 2597–2605 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002).
[CrossRef] [PubMed]

Proc. SPIE

H. T. Yura, L. Thrane, and P. E. Andersen, “Analysis of multiple scattering effects in optical Doppler tomography,” Proc. SPIE 5861, 5861B–1 (2005).

Quantum Electron.

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Monte Carlo simulation of an optical coherence Doppler tomography signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile,” Quantum Electron. 35(2), 135–139 (2005).
[CrossRef]

A. V. Bykov, M. Yu. Kirillin, and A. V. Priezzhev, “Analysis of distortions in the velocity profiles of suspension flows inside a light-scattering medium upon their reconstruction from the optical coherence Doppler tomography signal,” Quantum Electron. 35(11), 1079–1082 (2005).
[CrossRef]

Sens. Actuators A

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sens. Actuators A 156(1), 8–13 (2009).
[CrossRef]

Waves Random Complex Media

G. Göbel, J. Kuhn, and J. Fricke, “Dependent scattering effects in latex-sphere suspensions and scattering powders,” Waves Random Complex Media 5(4), 413–426 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic overview of the spectral-domain Doppler OCT set-up used in the experiments. Doppler OCT measurements are performed without scanning the beam. More details about the various OCT components can be found in the text.

Fig. 2
Fig. 2

Schematic overview of the MC simulation parameters. The coherence length of the source is given by lc , the Gaussian beam waist at the focal position is given by w0 .

Fig. 3
Fig. 3

(a) OCT signal attenuation versus depth for varying Intralipid concentration. (b) Measured average scattering coefficient µs for varying Intralipid concentration (µt data obtained from the OCT signal slope is corrected for water absorption). The error bars depict the standard deviation of the measurement (N = 5).

Fig. 4
Fig. 4

Doppler OCT measurement for three Intralipid concentrations with the measured µs indicated. The flow profile is fitted between the boundaries of the cuvette (minima of the flow profile) with two models; the fit functions are shown in the graph. Doppler OCT signal artifacts can be observed for depths smaller than 150 µm and larger than 670 µm.

Fig. 5
Fig. 5

Monte Carlo simulations of the OCT signal attenuation in depth for varying Intralipid concentration. The simulations are performed with µs = 1, 2.9, 4.9 mm−1, for 2, 7, and 23 vol.% Intralipid, respectively. Indicated on the right are the effective OCT attenuation coefficients obtained for these simulations.

Fig. 6
Fig. 6

Monte Carlo simulation of the OCT signal attenuation for 23 vol.% Intralipid. The sum of the OCT signal is decomposed into classes related to the number of scattering events per photon (indicated). For single backscattering the attenuation is equal to the input µs . Multiple scattering adds signal to the OCT signal amplitude thereby decreasing the scattering coefficient from µs = 4.9 mm−1 to 4.2 mm−1.

Fig. 7
Fig. 7

Monte Carlo simulation of the Doppler OCT signal for varying Intralipid concentration (indicated). The input flow profile is indicated by the dashed line. The effects of increasing amounts of multiple scattering are indicated by the arrows. They are: a decrease of the measured peak flow, a shift of the measured peak flow to a larger depth, and an increase of the measured flow deeper into the sample.

Fig. 8
Fig. 8

Comparison between experimental Doppler OCT data from Fig. 4 (dots) and the MC simulations (dashed line) for three different Intralipid concentrations (indicated). The experimental and Monte Carlo Doppler data are normalized prior to comparison.

Metrics