Abstract

Highly birefringent (Hi-Bi) air-clad silica microfibers (MFs) with wavelength and sub-wavelength scale transverse dimensions are studied theoretically and experimentally. Hi-Bi MFs are taper-drawn from the standard SMF-28 single mode fibers that are “pre-processed” by “cutting away” parts of the silica cladding on opposite sides of the fiber with a femtosecond infrared laser. Such Hi-Bi MFs have approximately elliptical cross-sections and are approximated by a three-layer model comprising a small central Ge-doped region surrounded by an elliptical silica region and an air-cladding. Theoretical modeling shows that phase and group birefringence of the order 10−2 can be achieved with such air-clad Hi-Bi MFs. Experiments with an air-clad elliptical fiber with a major diameter of 0.9μm and a minor/major diameter ratio of 0.9 demonstrated a group birefringence of ~ 0.015, agreeing well with the theoretical predictions. The Hi-Bi MFs are useful for micron/nanoscale polarization maintaining transmission and phase-sensitive interferometric sensors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
    [CrossRef]
  2. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [CrossRef]
  3. L. Poti and A. Bogoni, “Experimental demonstration of a PMD compensator with a step control algorithm,” IEEE Photon. Technol. Lett. 13(12), 1367–1369 (2001).
    [CrossRef]
  4. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-Loss Single Polarization Fibers with Asymmetrical Strain Birefringence,” Electron. Lett. 17(15), 530–531 (1981).
    [CrossRef]
  5. M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-Tie Optical Fibers,” Electron. Lett. 19(7), 246–247 (1983).
    [CrossRef]
  6. S. C. Rashleigh and M. J. Marrone, “Polarization Holding in Elliptical-Core Birefringent Fibers,” IEEE J. Quantum Electron. 18(10), 1515–1523 (1982).
    [CrossRef]
  7. R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
    [CrossRef]
  8. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  9. G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  10. L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  11. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [CrossRef] [PubMed]
  12. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  13. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30(11), 1273–1275 (2005).
    [CrossRef] [PubMed]
  14. J. Villatoro and D. Monzon-Hernandez, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13(13), 5087–5092 (2005).
    [CrossRef] [PubMed]
  15. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  16. M. Sumetsky, “Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26(1), 21–27 (2008).
    [CrossRef]
  17. S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34(3), 253–255 (2009).
    [CrossRef] [PubMed]
  18. Y. H. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
    [CrossRef] [PubMed]
  19. Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).
    [PubMed]
  20. Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
    [CrossRef]
  21. X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
    [CrossRef]
  22. L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
    [CrossRef] [PubMed]
  23. I. K. Hwang, Y. H. Lee, K. Oh, and D. N. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12(9), 1916–1923 (2004).
    [CrossRef] [PubMed]
  24. R. B. Dyott, Elliptical fiber waveguides (Artech House, boston.london, 1995).
  25. C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33(11), 3235–3243 (1962).
    [CrossRef]
  26. J. K. Shaw, W. M. Henry, and W. R. Winfrey, “Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu's equation,” J. Lightwave Technol. 13(12), 2359–2371 (1995).
    [CrossRef]
  27. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
    [CrossRef] [PubMed]
  28. X. Chen, M.-J. Li, N. Venkataraman, M. Gallagher, W. Wood, A. Crowley, J. Carberry, L. Zenteno, and K. Koch, “Highly birefringent hollow-core photonic bandgap fiber,” Opt. Express 12(16), 3888–3893 (2004).
    [CrossRef] [PubMed]
  29. J. R. Folkenberg, M. D. Nielsen, N. A. Mortensen, C. Jakobsen, and H. R. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
    [CrossRef] [PubMed]
  30. H. F. Xuan, W. Jin, M. Zhang, J. Ju, and Y. B. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express 17(15), 13246–13254 (2009).
    [CrossRef] [PubMed]

2009 (3)

2008 (3)

2007 (1)

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

2006 (1)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

2005 (3)

2004 (5)

2003 (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2001 (1)

L. Poti and A. Bogoni, “Experimental demonstration of a PMD compensator with a step control algorithm,” IEEE Photon. Technol. Lett. 13(12), 1367–1369 (2001).
[CrossRef]

1997 (1)

1995 (1)

J. K. Shaw, W. M. Henry, and W. R. Winfrey, “Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu's equation,” J. Lightwave Technol. 13(12), 2359–2371 (1995).
[CrossRef]

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

1984 (1)

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[CrossRef]

1983 (2)

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-Tie Optical Fibers,” Electron. Lett. 19(7), 246–247 (1983).
[CrossRef]

S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
[CrossRef] [PubMed]

1982 (1)

S. C. Rashleigh and M. J. Marrone, “Polarization Holding in Elliptical-Core Birefringent Fibers,” IEEE J. Quantum Electron. 18(10), 1515–1523 (1982).
[CrossRef]

1981 (1)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-Loss Single Polarization Fibers with Asymmetrical Strain Birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[CrossRef]

1979 (1)

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

1962 (1)

C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33(11), 3235–3243 (1962).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Bergh, R. A.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[CrossRef]

Birch, R. D.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-Tie Optical Fibers,” Electron. Lett. 19(7), 246–247 (1983).
[CrossRef]

Birks, T. A.

Bogoni, A.

L. Poti and A. Bogoni, “Experimental demonstration of a PMD compensator with a step control algorithm,” IEEE Photon. Technol. Lett. 13(12), 1367–1369 (2001).
[CrossRef]

Brambilla, G.

Carberry, J.

Chen, X.

Chen, X. W.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Chen, Y.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[CrossRef]

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).
[PubMed]

Cheung, G.

Cozens, J. R.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

Crowley, A.

Dyott, R. B.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-Loss Single Polarization Fibers with Asymmetrical Strain Birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[CrossRef]

Finazzi, V.

Folkenberg, J. R.

Fu, J.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

Gallagher, M.

Gattass, R. R.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Guo, X.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

He, S. L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Henry, W. M.

J. K. Shaw, W. M. Henry, and W. R. Winfrey, “Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu's equation,” J. Lightwave Technol. 13(12), 2359–2371 (1995).
[CrossRef]

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-Loss Single Polarization Fibers with Asymmetrical Strain Birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[CrossRef]

Hu, Z. F.

Hwang, I. K.

Jacques, F.

Jakobsen, C.

Jiang, X. S.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[CrossRef]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Jin, W.

Ju, J.

Knight, J. C.

Koch, K.

Lee, Y. H.

Lefevre, H. C.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[CrossRef]

Li, M.-J.

Li, Y. H.

Liao, Y. B.

Liu, L.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Lou, J. Y.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ma, Z.

Mansuripur, M.

Marrone, M. J.

S. C. Rashleigh and M. J. Marrone, “Polarization Holding in Elliptical-Core Birefringent Fibers,” IEEE J. Quantum Electron. 18(10), 1515–1523 (1982).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-Loss Single Polarization Fibers with Asymmetrical Strain Birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[CrossRef]

Monzon-Hernandez, D.

Morris, D. G.

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

Mortensen, N. A.

Nielsen, M. D.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Oh, K.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-Loss Single Polarization Fibers with Asymmetrical Strain Birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[CrossRef]

Payne, D. N.

I. K. Hwang, Y. H. Lee, K. Oh, and D. N. Payne, “High birefringence in elliptical hollow optical fiber,” Opt. Express 12(9), 1916–1923 (2004).
[CrossRef] [PubMed]

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-Tie Optical Fibers,” Electron. Lett. 19(7), 246–247 (1983).
[CrossRef]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Poti, L.

L. Poti and A. Bogoni, “Experimental demonstration of a PMD compensator with a step control algorithm,” IEEE Photon. Technol. Lett. 13(12), 1367–1369 (2001).
[CrossRef]

Rashleigh, S. C.

S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
[CrossRef] [PubMed]

S. C. Rashleigh and M. J. Marrone, “Polarization Holding in Elliptical-Core Birefringent Fibers,” IEEE J. Quantum Electron. 18(10), 1515–1523 (1982).
[CrossRef]

Richardson, D. J.

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-Loss Single Polarization Fibers with Asymmetrical Strain Birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[CrossRef]

Shaw, H. J.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[CrossRef]

Shaw, J. K.

J. K. Shaw, W. M. Henry, and W. R. Winfrey, “Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu's equation,” J. Lightwave Technol. 13(12), 2359–2371 (1995).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Simonsen, H. R.

Song, Q. H.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

Sumetsky, M.

Tarbox, E. J.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-Tie Optical Fibers,” Electron. Lett. 19(7), 246–247 (1983).
[CrossRef]

Tong, L. M.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[CrossRef]

S. S. Wang, Z. F. Hu, Y. H. Li, and L. M. Tong, “All-fiber Fabry-Perot resonators based on microfiber Sagnac loop mirrors,” Opt. Lett. 34(3), 253–255 (2009).
[CrossRef] [PubMed]

Y. H. Li and L. M. Tong, “Mach-Zehnder interferometers assembled with optical microfibers or nanofibers,” Opt. Lett. 33(4), 303–305 (2008).
[CrossRef] [PubMed]

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).
[PubMed]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, J. Y. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Varnham, M. P.

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-Tie Optical Fibers,” Electron. Lett. 19(7), 246–247 (1983).
[CrossRef]

Venkataraman, N.

Vienne, G.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Villatoro, J.

Wang, S. S.

Winfrey, W. R.

J. K. Shaw, W. M. Henry, and W. R. Winfrey, “Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu's equation,” J. Lightwave Technol. 13(12), 2359–2371 (1995).
[CrossRef]

Wood, W.

Xu, L.

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

Xuan, H. F.

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, Q.

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[CrossRef]

Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33, 2565–2567 (2008).
[PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yeh, C.

C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33(11), 3235–3243 (1962).
[CrossRef]

Zenteno, L.

Zhang, M.

Appl. Phys. Lett. (3)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, and L. M. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett. 94(10), 101108 (2009).
[CrossRef]

X. S. Jiang, Q. H. Song, L. Xu, J. Fu, and L. M. Tong, “Microfiber knot dye laser based on the evanescent-wave-coupled gain,” Appl. Phys. Lett. 90(23), 233501 (2007).
[CrossRef]

Electron. Lett. (3)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, and T. Edahiro, “Low-Loss Single Polarization Fibers with Asymmetrical Strain Birefringence,” Electron. Lett. 17(15), 530–531 (1981).
[CrossRef]

M. P. Varnham, D. N. Payne, R. D. Birch, and E. J. Tarbox, “Single-Polarization Operation of Highly Birefringent Bow-Tie Optical Fibers,” Electron. Lett. 19(7), 246–247 (1983).
[CrossRef]

R. B. Dyott, J. R. Cozens, and D. G. Morris, “Preservation of polarisation in optical-fibre waveguides with elliptical cores,” Electron. Lett. 15(13), 380–382 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. C. Rashleigh and M. J. Marrone, “Polarization Holding in Elliptical-Core Birefringent Fibers,” IEEE J. Quantum Electron. 18(10), 1515–1523 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Poti and A. Bogoni, “Experimental demonstration of a PMD compensator with a step control algorithm,” IEEE Photon. Technol. Lett. 13(12), 1367–1369 (2001).
[CrossRef]

J. Appl. Phys. (1)

C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33(11), 3235–3243 (1962).
[CrossRef]

J. Lightwave Technol. (4)

J. K. Shaw, W. M. Henry, and W. R. Winfrey, “Weakly guiding analysis of elliptical core step index waveguides based on the characteristic numbers of Mathieu's equation,” J. Lightwave Technol. 13(12), 2359–2371 (1995).
[CrossRef]

M. Sumetsky, “Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators,” J. Lightwave Technol. 26(1), 21–27 (2008).
[CrossRef]

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “An Overview of Fiber-Optic Gyroscopes,” J. Lightwave Technol. 2(2), 91–107 (1984).
[CrossRef]

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[CrossRef]

Nano Lett. (1)

L. M. Tong, J. Y. Lou, R. R. Gattass, S. L. He, X. W. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett. 5(2), 259–262 (2005).
[CrossRef] [PubMed]

Nature (2)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (6)

Other (1)

R. B. Dyott, Elliptical fiber waveguides (Artech House, boston.london, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The three layer model of air-clad elliptical microfiber. Effective indexes of lower-order modes as functions of normalized fiber diameter ( 2 a * 2 b / λ ) for b/a = 0.5 (b) and b/a = 0.9 (c). Vertical dotted lines (blue) in (b) and (c) indicate the critical normalized fiber diameters for higher-order modes cut-off.

Fig. 2
Fig. 2

Birefringence of as function of optical wavelength for various fiber dimensions and ellipticities. (a) b/a = 0.5, a from 0.2 to 0.8 μm; (b) b/a = 0.9, a from 0.2 to 0.8 μm; (c) b/a = 0.5, a from 1 to 5 μm; and (d) b/a = 0.9, a from 1 to 5 μm

Fig. 3
Fig. 3

(a) Birefringence as function of normalized fiber diameter 2 a * 2 b / λ for elliptical microfibers with various b/a from 0.5 to 0.9 (left-vertical axis). The “+” line (right-vertical axis) is the higher modes cut-off line as determined from Eq. (1); the left side of this line is the single mode region. (b) Maximum birefringence as function of b/a.

Fig. 4
Fig. 4

(a) Schematic of the femtosecond IR laser system for SMF “pre-processing”. The femtosecond laser scanning routing is shown in the magnified inset. (b) and (c) Artistic views of the idealized “pre-processed” SMF section from which a Hi-Bi MF may be taper-drawn.

Fig. 5
Fig. 5

(a) Microscope image (top view) and (b) SEM image of the SMF section after being “pre-processed” by the femtosecond laser. (c) and (d): SEM images of the rectangle-like silica fibers whose diameters are around 10 μm. (e) and (f): SEM images of elliptical Hi-Bi MFs whose diameters are on the order of ~1 μm. (e) Sample H1. (f) Sample H2. The thin fibers shown in (c) - (f) are taper-drawn from the “pre-processed” SMF.

Fig. 6
Fig. 6

Normalized transmission spectrum of a Hi-Bi MF with ~1.0 μm major diameter and a minor/major ratio of ~0.9. The tapered region has a central uniform waist region of ~10 mm and transition region of ~35 mm at both sides of the waist.

Fig. 7
Fig. 7

Measured transmission spectrum for Hi-Bi MF sample (a) H1 and (b) H2. Group birefringence Bg and phase birefringence B as functions of wavelength for Hi-Bi MF sample (c) H1 and (d) H2.

Fig. 8
Fig. 8

Poincaré sphere trace for MFs. (a) Hi-Bi MF; and (b) MF with a circular cross-section. The traces were obtained over 1 hour in laboratory environment.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 a * 2 b λ = P c u t o f f ( b a ) = 0 .4519* ( b a ) 3 - 1 .3181* ( b a ) 2 +1 .3448* ( b a ) + 0 .2508
2 a * 2 b λ ~ 0.6
B m a x = 0.043946 * ( b a ) 2 0.17444 * ( b a ) + 0.13053
B g ( λ ) = B ( λ ) λ d B ( λ ) d λ
Δ λ λ 2 B g L

Metrics