P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).

[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, W. Ted Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).

[CrossRef]

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).

[CrossRef]

B. -S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).

[CrossRef]

D. Englund, I. Fushman, and J. Vuckovic. “General Recipe for Designing Photonic Crystal Cavities,” Opt. Express 12, 5961–5975 (2005).

[CrossRef]

A. Hakansson and J. Sanchez-Dehesa, “Inverse designed photonic crystal de-multiplex waveguide coupler,” Opt. Express 13, 5440–5449 (2005).

[CrossRef]
[PubMed]

Y. Akahane, T. Asano, B. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).

[CrossRef]
[PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 1–11 (2002).

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwells equations in a planewave basis,” Opt. Express 8, 967–970 (1999).

J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1979).

[CrossRef]

M. Albani and P. Bernardi, “A Numerical Method Based on the Discretization of Maxwell Equations in Integral Form,” IEEE Trans. Microwave Theory Tech. 22, 446–450 (1974).

[CrossRef]

K. Yee, “Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. Mag. 14, 302–307 (1966).

[CrossRef]

B. -S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).

[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).

[CrossRef]
[PubMed]

M. Albani and P. Bernardi, “A Numerical Method Based on the Discretization of Maxwell Equations in Integral Form,” IEEE Trans. Microwave Theory Tech. 22, 446–450 (1974).

[CrossRef]

B. -S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).

[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).

[CrossRef]
[PubMed]

J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1979).

[CrossRef]

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).

[CrossRef]

M. Albani and P. Bernardi, “A Numerical Method Based on the Discretization of Maxwell Equations in Integral Form,” IEEE Trans. Microwave Theory Tech. 22, 446–450 (1974).

[CrossRef]

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, http://stanford.edu/∼boyd/cvx, June 2009.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).

[CrossRef]

D. Englund, I. Fushman, and J. Vuckovic. “General Recipe for Designing Photonic Crystal Cavities,” Opt. Express 12, 5961–5975 (2005).

[CrossRef]

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).

[CrossRef]

D. Englund, I. Fushman, and J. Vuckovic. “General Recipe for Designing Photonic Crystal Cavities,” Opt. Express 12, 5961–5975 (2005).

[CrossRef]

J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1979).

[CrossRef]

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, http://stanford.edu/∼boyd/cvx, June 2009.

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).

[CrossRef]

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).

[CrossRef]

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).

[CrossRef]

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).

[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwells equations in a planewave basis,” Opt. Express 8, 967–970 (1999).

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwells equations in a planewave basis,” Opt. Express 8, 967–970 (1999).

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).

[CrossRef]

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).

[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 1–11 (2002).

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 1–11 (2002).

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).

[CrossRef]

B. -S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).

[CrossRef]

Y. Akahane, T. Asano, B. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).

[CrossRef]
[PubMed]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 1–11 (2002).

B. -S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).

[CrossRef]

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).

K. Rivoire, Z. Lin, F. Hatami, W. Ted Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).

[CrossRef]

D. Englund, I. Fushman, and J. Vuckovic. “General Recipe for Designing Photonic Crystal Cavities,” Opt. Express 12, 5961–5975 (2005).

[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 1–11 (2002).

K. Yee, “Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. Mag. 14, 302–307 (1966).

[CrossRef]

P. Deotare, M. McCutcheon, I. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94, 121106 (2009).

[CrossRef]

K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89, 041118 (2006).

[CrossRef]

K. Yee, “Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. Mag. 14, 302–307 (1966).

[CrossRef]

M. Albani and P. Bernardi, “A Numerical Method Based on the Discretization of Maxwell Equations in Integral Form,” IEEE Trans. Microwave Theory Tech. 22, 446–450 (1974).

[CrossRef]

B. -S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).

[CrossRef]

K. Rivoire, Z. Lin, F. Hatami, W. Ted Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009).

[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwells equations in a planewave basis,” Opt. Express 8, 967–970 (1999).

Y. Akahane, T. Asano, B. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).

[CrossRef]
[PubMed]

A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16, 17689–17694 (2008).

[CrossRef]
[PubMed]

A. Hakansson and J. Sanchez-Dehesa, “Inverse designed photonic crystal de-multiplex waveguide coupler,” Opt. Express 13, 5440–5449 (2005).

[CrossRef]
[PubMed]

P. Borel, A. Harpth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004).

[CrossRef]
[PubMed]

D. Englund, I. Fushman, and J. Vuckovic. “General Recipe for Designing Photonic Crystal Cavities,” Opt. Express 12, 5961–5975 (2005).

[CrossRef]

J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wavelength limit,” Phys. Rev. B 22, 4950–4959 (1979).

[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 1–11 (2002).

CHOLMOD software package, accessed via Matlab.

Intel Core 2 Quad 2.5GHz, 8Gb RAM.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, http://stanford.edu/∼boyd/cvx, June 2009.