Abstract

We propose a kind of novel low-loss Terahertz (THz) waveguide, a polymer tube with a cross section of ring structure. Low-loss property of the polymer tube for THz guiding is achieved due to the effect of the air core inside the polymer tube which traps a large part of mode power and, at the same time, enlarges the mode area of the fundamental mode. Both the polymer tube and a solid polymer fiber are comparatively investigated, considering effective indexes, mode area, power fraction, relative absorption loss and mode profile. Simulation results show that the proposed polymer tube exhibits better loss property and confinement property than the solid polymer fiber. As an example, we finally show the experimentally measured property of a Polytetrafluoroethylene (PTFE) tube.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
    [CrossRef]
  2. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
    [CrossRef]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  4. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  5. Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25(15), 1122–1124 (2000).
    [CrossRef]
  6. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with a nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
    [CrossRef]
  7. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
    [CrossRef]
  8. G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8(2), 241–253 (1995).
    [CrossRef]
  9. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
    [CrossRef]
  10. R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
    [CrossRef]
  11. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
    [CrossRef]
  12. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).
  13. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
    [CrossRef] [PubMed]
  14. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [CrossRef] [PubMed]
  15. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–862 (2000).
    [CrossRef]
  16. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  17. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [CrossRef] [PubMed]
  18. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [CrossRef] [PubMed]
  19. J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
    [CrossRef]
  20. A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
    [CrossRef] [PubMed]
  21. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  22. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  23. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymer,” J. Korean Phys. Soc. 49, 513–517 (2006).
  24. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [CrossRef]
  25. A. W. Snyder, and J. D. Love, “Optical Waveguide Theory,” Chapman Hall, New York, (1983).
  26. C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
    [CrossRef]

2009

2008

2007

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

2006

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymer,” J. Korean Phys. Soc. 49, 513–517 (2006).

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

2005

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
[CrossRef]

2004

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2003

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with a nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[CrossRef]

2002

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

2001

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[CrossRef]

2000

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[CrossRef]

Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25(15), 1122–1124 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–862 (2000).
[CrossRef]

1998

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

1995

G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8(2), 241–253 (1995).
[CrossRef]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
[CrossRef] [PubMed]

1992

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[CrossRef]

Abbott, D.

Adam, A. J. L.

Afshar V, S.

Allard, J. F.

Atakaramians, S.

Auston, D. H.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[CrossRef]

Bang, O.

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Bolivar, P. H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[CrossRef]

Bosserhoff, A.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[CrossRef]

Brucherseifer, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[CrossRef]

Buttner, R.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[CrossRef]

Carr, G. L.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Chang, H. C.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

Chen, H. T.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with a nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[CrossRef]

Chen, H. W.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

Chen, L. J.

Chen, Q.

Cho, G. C.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with a nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[CrossRef]

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Dubois, C.

Dupuis, A.

Fischer, B. M.

Gallot, G.

Grischkowsky, D.

Han, P. Y.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[CrossRef]

Hassani, A.

Helm, H.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

Hu, B. B.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Ito, H.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

Jamison, S. P.

Jeon, S. G.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymer,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jepsen, P. U.

Jiang, Z.

Jin, Y. S.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymer,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jordan, K.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Kao, T. F.

Kawase, K.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
[CrossRef]

Kersting, R.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with a nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[CrossRef]

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[CrossRef]

Kim, G. J.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymer,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kleine-Ostmann, T.

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

Koch, M

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Kono, S.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Krumbholz, N

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

Kurner, T

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

Kurz, H.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[CrossRef]

Lewen, F.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

Li, Y. T.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
[CrossRef]

Lu, J. Y.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

Martin, M. C.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
[CrossRef] [PubMed]

McGowan, R. W.

McKinney, W. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Mittleman, D

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Monro, T. M.

Morris, D.

Nagel, M.

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[CrossRef]

Neil, G. R.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Nielsen, K.

Nuss, M. C.

Pan, C. L.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

Piesiewcz, R.

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

Planken, P. C. M.

Rasmussen, H. K.

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Saitoh, K.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

Schoebel, J

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
[CrossRef]

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

Skorobogatiy, M.

Stoeffler, K.

Sun, C. K.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
[CrossRef]

Tani, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
[CrossRef]

Usami, M.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Williams, G. P.

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
[CrossRef] [PubMed]

Winnewisser, C.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

Winnewisser, G.

G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8(2), 241–253 (1995).
[CrossRef]

Xu, G. X.

Xu, L.

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[CrossRef]

Yu, C. P.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

Zhang, X.-C.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[CrossRef]

Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25(15), 1122–1124 (2000).
[CrossRef]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[CrossRef]

Appl. Phys. Lett.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with a nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[CrossRef]

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86(24), 241116–241118 (2005).
[CrossRef]

M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77(24), 4049–4051 (2000).
[CrossRef]

L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61(15), 1784–1786 (1992).
[CrossRef]

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92(6), 064105 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[CrossRef]

IEEE Antennas Propagation Mag.

R. Piesiewcz, T. Kleine-Ostmann, N Krumbholz, D Mittleman, M Koch, J Schoebel, and T Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propagation Mag. 49, 24–39 (2007).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002).
[CrossRef]

J. Appl. Phys.

P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89(4), 2357–2359 (2001).
[CrossRef]

J. Korean Phys. Soc.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymer,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 34, R1–R14 (2001).

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Nature

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153–156 (2002).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Vib. Spectrosc.

G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8(2), 241–253 (1995).
[CrossRef]

Other

A. W. Snyder, and J. D. Love, “Optical Waveguide Theory,” Chapman Hall, New York, (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Polymer tube’s cross section with a ring structure and (b) solid polymer fiber’s cross section with solid cirlce structure.

Fig. 2
Fig. 2

(a) Effective index of the fundamental modes of the polymer tube (black curve) and the solid polymer fiber (red curve) as a function of the THz wave frequency. (b) Mode area of the fundamental modes of the polymer tube (black curve) and the solid polymer fiber (red curve) as a function of the THz wave frequency. Inset shows the mode profiles of the power flow of the fundamental mode of the polymer tube for the THz wave frequencies of ν = 0.6 T H z , ν = 0.75 T H z , ν = 1.0 T H z , ν = 1.2 T H z , and ν = 1.5 T H z , respectively.,

Fig. 3
Fig. 3

(a) Power fractions of the modal power in polymer material [black (red) solid curves with hollow circles for polymer tube (solid polymer fiber)], air-cladding [black (red) dotted curves with hollow circles for polymer tube (solid polymer fiber)], and air-core (black dashed curve with hollow triangles for polymer tube) of the fundamental modes of the polymer tube and the solid polymer fiber. (b) Relative absorption loss of the solid polymer fiber (red curve with hollow circles) and the polymer tubes with the same external diameter of D = 300 μ m and the different internal diameters of d = 225 μ m (blue curve with hollow circles), d = 250 μ m (black curve with hollow circles), and d = 275 μ m (green curve with hollow circles).

Fig. 4
Fig. 4

(a) Mode profile of the power flow of the fundamental mode of the polymer tubes and the solid polymer fiber when the THz wave frequency is ν = 1.0 T H z . (b) Normalized power flow distribution of the polymer tubes and the solid polymer fiber in the radial direction.

Fig. 5
Fig. 5

Experimentally measured (red solid curve) and theoretically calculated (black dashed curve) effective indexes of the fundamental modes of the PTFE tube with the external/internal diameters ( D = 1200 μ m / d = 600 μ m ). Insets show (a) the reference THz signal and (b) the measured THz signal after the the PTFE tube in the time domain.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f i = i S z d A / a l l S z d A
α m o d α m a t = ( ε 0 / μ 0 ) 1 / 2 n p o l y m e r | E | 2 d A / Re { z ^ a l l E × H * d A } ,

Metrics