Abstract

This paper demonstrates the first combination for wide-field surface plasmon (SP) phase microscopy and SP-enhanced fluorescence microscopy to image living cells’ contacts on the surface of a bio-substrate simultaneously. The phase microscopy with a phase-shift interferometry and common-path optical setup can provide high-sensitivity phase information in long-term stability. Simultaneously, the fluorescence microscopy with the enhancement of a local electromagnetic field can supply bright fluorescent images. The combined microscope imposes a high numerical aperture objective upon the excitation of surface plasmon through a silver film with a thickness of 30 nm. The developed SP microscope is successfully applied to the real-time bright observation of the transfected fluorescence of living cells localized near the cell membrane on the bio-substrate and the high-sensitivity phase image of the cell-substrate contacts at the same time.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
    [PubMed]
  2. S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
    [CrossRef] [PubMed]
  3. W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
    [CrossRef] [PubMed]
  4. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Methods Enzymol. 361, 1–33 (2003).
    [CrossRef] [PubMed]
  5. K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
    [CrossRef] [PubMed]
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).
  7. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
    [CrossRef] [PubMed]
  8. M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
    [CrossRef] [PubMed]
  9. K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16(25), 20734–20741 (2008).
    [CrossRef] [PubMed]
  10. Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30(12), 1488–1490 (2005).
    [CrossRef] [PubMed]
  11. K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
    [CrossRef] [PubMed]
  12. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006).
    [CrossRef] [PubMed]
  13. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009).
    [CrossRef] [PubMed]
  14. A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
    [CrossRef] [PubMed]
  15. B. Rothenhäusler and W. Knoll, “Interferometric determination of the complex wave vector of plasmon surface polaritons,” J. Opt. Soc. Am. B 5(7), 1401–1405 (1988).
    [CrossRef]
  16. W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” Mat. Res. Soc. Bulletin. 16, 29–39 (1991).
  17. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
    [CrossRef]
  18. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
    [CrossRef] [PubMed]
  19. N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
    [CrossRef]
  20. N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13(1), 12–22 (2007).
    [CrossRef]
  21. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
    [CrossRef]
  22. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  23. P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2505 (1987).
    [CrossRef] [PubMed]
  24. J.-J. Chyou, S.-J. Chen, and Y.-K. Chen, “Two-dimensional phase unwrapping with a multichannel least-mean-square algorithm,” Appl. Opt. 43(30), 5655–5661 (2004).
    [CrossRef] [PubMed]
  25. Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
    [CrossRef] [PubMed]
  26. R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc. 3(1), 1–16 (1993).
    [CrossRef]
  27. B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988).
    [CrossRef]
  28. M. C. Boffa, B. Burke, and C. C. Haudenschild, “Preservation of thrombomodulin antigen on vascular and extravascular surfaces,” J. Histochem. Cytochem. 35(11), 1267–1276 (1987).
    [CrossRef] [PubMed]
  29. H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
    [CrossRef] [PubMed]

2009 (2)

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17(8), 5987–5997 (2009).
[CrossRef] [PubMed]

2008 (2)

K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. Express 16(25), 20734–20741 (2008).
[CrossRef] [PubMed]

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

2007 (4)

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
[CrossRef] [PubMed]

N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13(1), 12–22 (2007).
[CrossRef]

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

2004 (1)

2003 (2)

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Methods Enzymol. 361, 1–33 (2003).
[CrossRef] [PubMed]

2002 (1)

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

2001 (2)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

2000 (1)

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
[CrossRef] [PubMed]

1999 (1)

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

1996 (1)

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

1994 (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[CrossRef]

1993 (1)

R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc. 3(1), 1–16 (1993).
[CrossRef]

1992 (1)

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

1991 (1)

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” Mat. Res. Soc. Bulletin. 16, 29–39 (1991).

1988 (2)

1987 (2)

P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26(13), 2504–2505 (1987).
[CrossRef] [PubMed]

M. C. Boffa, B. Burke, and C. C. Haudenschild, “Preservation of thrombomodulin antigen on vascular and extravascular surfaces,” J. Histochem. Cytochem. 35(11), 1267–1276 (1987).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Axelrod, D.

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Methods Enzymol. 361, 1–33 (2003).
[CrossRef] [PubMed]

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
[CrossRef] [PubMed]

R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc. 3(1), 1–16 (1993).
[CrossRef]

Bastmeyer, M.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Bechinger, C.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Berger, C. E. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[CrossRef]

Betz, W. J.

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

Bhadriraju, K.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Boffa, M. C.

M. C. Boffa, B. Burke, and C. C. Haudenschild, “Preservation of thrombomodulin antigen on vascular and extravascular surfaces,” J. Histochem. Cytochem. 35(11), 1267–1276 (1987).
[CrossRef] [PubMed]

Britland, S. T.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Bu, J.

Burke, B.

M. C. Boffa, B. Burke, and C. C. Haudenschild, “Preservation of thrombomodulin antigen on vascular and extravascular surfaces,” J. Histochem. Cytochem. 35(11), 1267–1276 (1987).
[CrossRef] [PubMed]

Burmeister, J. S.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

Carey, G. B.

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

Chang, C.-H.

Chang, G. L.

Chang, N. S.

N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13(1), 12–22 (2007).
[CrossRef]

Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
[CrossRef] [PubMed]

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

Chang, N.-S.

Chen, S. J.

Chen, S.-J.

Chen, Y.-K.

Chiu, K. C.

Cho, K.-C.

Chyou, J.-J.

Denyer, M. C. T.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Eiju, T.

Fulbright, R. M.

R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc. 3(1), 1–16 (1993).
[CrossRef]

Gao, B. Z.

Geddes, C. D.

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

Giebel, K. F.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Grapa, E.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

Greve, J.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[CrossRef]

Halter, M.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Hariharan, P.

Haudenschild, C. C.

M. C. Boffa, B. Burke, and C. C. Haudenschild, “Preservation of thrombomodulin antigen on vascular and extravascular surfaces,” J. Histochem. Cytochem. 35(11), 1267–1276 (1987).
[CrossRef] [PubMed]

He, R. Y.

He, R.-Y.

Heath, J.

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

Herminghaus, S.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Hong, Q.

Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
[CrossRef] [PubMed]

Hsu, L. J.

Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
[CrossRef] [PubMed]

N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13(1), 12–22 (2007).
[CrossRef]

Huang, B.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Huang, H. C.

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

Jamil, M. M. A.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Jiang, S. J.

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

Knoll, W.

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” Mat. Res. Soc. Bulletin. 16, 29–39 (1991).

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[CrossRef]

B. Rothenhäusler and W. Knoll, “Interferometric determination of the complex wave vector of plasmon surface polaritons,” J. Opt. Soc. Am. B 5(7), 1401–1405 (1988).
[CrossRef]

Kooyman, R. P. H.

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[CrossRef]

Lai, F. J.

N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13(1), 12–22 (2007).
[CrossRef]

Lakowicz, J. R.

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

Lee, G. B.

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[CrossRef] [PubMed]

Lee, K. H.

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[CrossRef] [PubMed]

Leiderer, P.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Lin, C. H.

Lin, C.-Y.

Lin, Y. S.

N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13(1), 12–22 (2007).
[CrossRef]

Liu, S.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Mao, F.

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

Mattison, J.

Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
[CrossRef] [PubMed]

Moh, K. J.

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Oreb, B. F.

Peterson, A. W.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Plant, A. L.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Pratt, N.

Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
[CrossRef] [PubMed]

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

Reichert, W. M.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

Riedel, M.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Rothenhäusler, B.

Schultz, L.

Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
[CrossRef] [PubMed]

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

See, C. W.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Sheu, H. M.

N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13(1), 12–22 (2007).
[CrossRef]

Shi, C. S.

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

Shi, G. Y.

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

Sleve, D.

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

Smith, C. B.

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

Somekh, M. G.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Su, Y. D.

Su, Y.-D.

Sund, S. E.

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
[CrossRef] [PubMed]

Tona, A.

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

Truskey, G. A.

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

Tseng, F. G.

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[CrossRef] [PubMed]

Weiland, U.

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Wu, C. M.

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

Wu, H. L.

R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14(20), 9307–9316 (2006).
[CrossRef] [PubMed]

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

Yang, H. Y.

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

Yeh, T. L.

Youseffi, M.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Yu, F.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Yuan, X. C.

Zare, R. N.

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Zevotek, N.

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

Zhang, J.

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Zhu, S. W.

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[CrossRef] [PubMed]

Anal. Chem. (1)

B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79(7), 2979–2983 (2007).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biophys. J. (2)

S. E. Sund and D. Axelrod, “Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching,” Biophys. J. 79(3), 1655–1669 (2000).
[CrossRef] [PubMed]

K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76(1), 509–516 (1999).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

K. H. Lee, Y. D. Su, S. J. Chen, F. G. Tseng, and G. B. Lee, “Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay,” Biosens. Bioelectron. 23(4), 466–472 (2007).
[CrossRef] [PubMed]

BMC Cell Biol. (1)

A. W. Peterson, M. Halter, A. Tona, K. Bhadriraju, and A. L. Plant, “Surface plasmon resonance imaging of cells and surface-associated fibronectin,” BMC Cell Biol. 10(1), 16 (2009).
[CrossRef] [PubMed]

BMC Mol. Biol. (1)

Q. Hong, L. J. Hsu, L. Schultz, N. Pratt, J. Mattison, and N. S. Chang, “Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response,” BMC Mol. Biol. 8(1), 50 (2007).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (1)

W. J. Betz, F. Mao, and C. B. Smith, “Imaging exocytosis and endocytosis,” Curr. Opin. Neurobiol. 6(3), 365–371 (1996).
[CrossRef] [PubMed]

J. Biol. Chem. (2)

N. S. Chang, N. Pratt, J. Heath, L. Schultz, D. Sleve, G. B. Carey, and N. Zevotek, “Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity,” J. Biol. Chem. 276(5), 3361–3370 (2001).
[CrossRef]

H. C. Huang, G. Y. Shi, S. J. Jiang, C. S. Shi, C. M. Wu, H. Y. Yang, and H. L. Wu, “Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain,” J. Biol. Chem. 278(47), 46750–46759 (2003).
[CrossRef] [PubMed]

J. Cell Sci. (1)

G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, “Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances,” J. Cell Sci. 103(Pt 2), 491–499 (1992).
[PubMed]

J. Fluoresc. (2)

C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[CrossRef]

R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc. 3(1), 1–16 (1993).
[CrossRef]

J. Histochem. Cytochem. (1)

M. C. Boffa, B. Burke, and C. C. Haudenschild, “Preservation of thrombomodulin antigen on vascular and extravascular surfaces,” J. Histochem. Cytochem. 35(11), 1267–1276 (1987).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Struct. Biol. (1)

M. M. A. Jamil, M. C. T. Denyer, M. Youseffi, S. T. Britland, S. Liu, C. W. See, M. G. Somekh, and J. Zhang, “Imaging of the cell surface interface using objective coupled widefield surface plasmon microscopy,” J. Struct. Biol. 164(1), 75–80 (2008).
[CrossRef] [PubMed]

Mat. Res. Soc. Bulletin. (1)

W. Knoll, “Optical characterization of organic thin films and interfaces with evanescent waves,” Mat. Res. Soc. Bulletin. 16, 29–39 (1991).

Methods Enzymol. (1)

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Methods Enzymol. 361, 1–33 (2003).
[CrossRef] [PubMed]

Nature (1)

B. Rothenhäusler and W. Knoll, “Surface-plasmon microscopy,” Nature 332(6165), 615–617 (1988).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65(9), 2829–2836 (1994).
[CrossRef]

Trends Mol. Med. (1)

N. S. Chang, L. J. Hsu, Y. S. Lin, F. J. Lai, and H. M. Sheu, “WW domain-containing oxidoreductase: a candidate tumor suppressor,” Trends Mol. Med. 13(1), 12–22 (2007).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Phase reflectivity spectrum based on a three-layer configuration: BK7/Ag (30nm)/H2O (Red line: bio-substrate without cell; Green line: bio-substrate with cell). (b) Enhancement factor distribution is perpendicular at sensing interface at incident angle of 77.5°.

Fig. 2
Fig. 2

Schematic illustration of experimental configuration employed for simultaneous live cell-substrate contacts imaging using a combination for wide-field oil-immersion objective based-on SP phase microscopy and SP-enhanced fluorescence microscopy.

Fig. 3
Fig. 3

(a) Epi-illumination image of E-beam lithographical 30 nm PMMA square patterns spaced 5μm apart on BK7 substrate with a metal film at different sizes (1 × 1μm2, 3 × 3μm2, 5 × 5μm2, 7 × 7μm2). The SP (b) intensity and (c) phase image of these PMMA patterns on a 45 nm thin gold film excited by a 632.8 nm laser in air. The SP (d) intensity and (e) phase image of these PMMA patterns located on a 30 nm thin silver film. The color bars indicate phase difference in π.

Fig. 4
Fig. 4

Live melanoma-GFP-tagged thrombomodulin SP-enhanced fluorescence images by utilizing (a) the 1.49 NA oil-immersion objective and (b) the 1.0 NA water-immersion objective, both with an exposure time of 0.5 sec at an incident angle of 77.5°.

Fig. 5
Fig. 5

Simultaneous (a) SP-enhanced fluorescence image, (b) 2D SP phase image, and (c) its 3D phase image of a living COS7 fibroblast transfected with an eGFP-WOX1 construct. The color bars indicate phase difference in π.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k x = ω c ε 0 sin θ = k sp 0 = ω c ε 2 ε 1 ε 2 + ε 1 ,
R 012 = | r 01 + r 12 exp ( 2 j k z 1 d 1 ) 1 + r 01 r 12 exp ( 2 j k z 1 d 1 ) | 2  with  r i j = ( k z i ε i k z j ε j ) / ( k z i ε i + k z j ε j )  for  i j = 0 ,  1, 2,
φ ( x , y ) = tan 1 [ 2 ( I 2 I 4 ) 2 I 3 I 5 I 1 ] .

Metrics