Abstract

We propose and successfully demonstrate a novel approach to optically generate ultrawideband (UWB) pulse with switchable shape and polarity by using a polarization-maintaining fiber Bragg grating (PM-FBG) as frequency discriminator. Depending on the shape of the reflective spectrum of the PM-FBG, the system can function as a first- or second-order differentiator for the generation of Gaussian UWB monocycle or doublet pulses. Consequently, the shape and the polarity of the generated UWB pulse can be switched by simple adjustment of a polarization controller (PC). Gaussian monocycle and doublet pulses were successfully obtained with fractional bandwidths of about 188% and 152%, respectively. Higher-order UWB pulses with spectrum covering from 2.9 GHz to 9.8 GHz have also been obtained through adjustment of the PC.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep., ET-Docket 98–153, FCC02–48, Apr. (2002).
  2. D. Porcine and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
    [CrossRef]
  3. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
    [CrossRef]
  4. J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [CrossRef]
  5. F. Zeng and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
    [CrossRef]
  6. F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
    [CrossRef]
  7. S. L. Pan and J. P. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009).
    [CrossRef] [PubMed]
  8. F. Zeng, Q. Wang, and J. P. Yao, “All-optical UWB impulse generation based on cross phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
    [CrossRef]
  9. Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
    [CrossRef] [PubMed]
  10. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express 17(7), 5023–5032 (2009).
    [CrossRef] [PubMed]
  11. C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
    [CrossRef]
  12. J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
    [CrossRef]
  13. S. Xiao and A. M. Weiner, “Coherent Fourier transform electrical pulse shaping,” Opt. Express 14(7), 3073–3082 (2006).
    [CrossRef] [PubMed]
  14. Q. Wang, F. Zeng, S. Blais, and J. P. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
    [CrossRef] [PubMed]
  15. J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, “Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator,” Opt. Express 15(26), 18156–18161 (2007).
    [CrossRef] [PubMed]
  16. H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
    [CrossRef]
  17. P. Ou, Y. Zhang, and C. X. Zhang, “Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator,” Opt. Express 16(7), 5130–5135 (2008).
    [CrossRef] [PubMed]
  18. J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang, and P. Shum, “Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator,” Opt. Lett. 33(3), 288–290 (2008).
    [CrossRef] [PubMed]
  19. Q. J. Chang, Y. Tian, T. Ye, J. M. Gao, and Y. K. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
    [CrossRef]
  20. H. Chen, T. Wang, M. Li, M. Chen, and S. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16(10), 7447–7452 (2008).
    [CrossRef] [PubMed]
  21. J. Wang, Q. Sun, J. Sun, and W. Zhang, “All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide,” Opt. Express 17(5), 3521–3530 (2009).
    [CrossRef] [PubMed]
  22. Q. Wang and J. Yao, “An Electrically Switchable Optical Ultrawideband Pulse Generator,” J. Lightwave Technol. 25(11), 3626–3633 (2007).
    [CrossRef]
  23. J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber,” IEEE Photon. Technol. Lett. 10(7), 941–943 (1998).
    [CrossRef]

2009 (3)

2008 (4)

2007 (7)

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

Q. Wang and J. Yao, “An Electrically Switchable Optical Ultrawideband Pulse Generator,” J. Lightwave Technol. 25(11), 3626–3633 (2007).
[CrossRef]

Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
[CrossRef] [PubMed]

J. Li, K. Xu, S. Fu, J. Wu, J. Lin, M. Tang, and P. Shum, “Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator,” Opt. Express 15(26), 18156–18161 (2007).
[CrossRef] [PubMed]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. P. Yao, “All-optical UWB impulse generation based on cross phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

2006 (5)

J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

S. Xiao and A. M. Weiner, “Coherent Fourier transform electrical pulse shaping,” Opt. Express 14(7), 3073–3082 (2006).
[CrossRef] [PubMed]

Q. Wang, F. Zeng, S. Blais, and J. P. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

2003 (2)

D. Porcine and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

1998 (1)

J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber,” IEEE Photon. Technol. Lett. 10(7), 941–943 (1998).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Blais, S.

Bolea, M.

Capmany, J.

Carter, A. L. G.

J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber,” IEEE Photon. Technol. Lett. 10(7), 941–943 (1998).
[CrossRef]

Chang, Q. J.

Q. J. Chang, Y. Tian, T. Ye, J. M. Gao, and Y. K. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Chen, H.

H. Chen, T. Wang, M. Li, M. Chen, and S. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16(10), 7447–7452 (2008).
[CrossRef] [PubMed]

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Chen, M.

H. Chen, T. Wang, M. Li, M. Chen, and S. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16(10), 7447–7452 (2008).
[CrossRef] [PubMed]

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Fu, S.

Gao, J. M.

Q. J. Chang, Y. Tian, T. Ye, J. M. Gao, and Y. K. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Hernandez-Cordero, J.

J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber,” IEEE Photon. Technol. Lett. 10(7), 941–943 (1998).
[CrossRef]

Hirt, W.

D. Porcine and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Kozlov, V. A.

J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber,” IEEE Photon. Technol. Lett. 10(7), 941–943 (1998).
[CrossRef]

Li, J.

Li, M.

Lin, J.

McKinney, J. D.

J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[CrossRef]

Mora, J.

Morse, T. F.

J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber,” IEEE Photon. Technol. Lett. 10(7), 941–943 (1998).
[CrossRef]

Ortega, B.

Ou, P.

Pan, S. L.

Porcine, D.

D. Porcine and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Qiu, C.

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

Shum, P.

Su, Y. K.

Q. J. Chang, Y. Tian, T. Ye, J. M. Gao, and Y. K. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Sun, J.

Sun, Q.

Tang, M.

Tian, Y.

Q. J. Chang, Y. Tian, T. Ye, J. M. Gao, and Y. K. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Wang, C.

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

Wang, J.

Wang, Q.

Wang, T.

Weiner, A. M.

S. Xiao and A. M. Weiner, “Coherent Fourier transform electrical pulse shaping,” Opt. Express 14(7), 3073–3082 (2006).
[CrossRef] [PubMed]

J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[CrossRef]

Wu, J.

Xiao, S.

Xie, S.

H. Chen, T. Wang, M. Li, M. Chen, and S. Xie, “Optically tunable multiband UWB pulse generation,” Opt. Express 16(10), 7447–7452 (2008).
[CrossRef] [PubMed]

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Xu, K.

Yao, J.

Yao, J. P.

S. L. Pan and J. P. Yao, “Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer,” Opt. Lett. 34(2), 160–162 (2009).
[CrossRef] [PubMed]

F. Zeng, Q. Wang, and J. P. Yao, “All-optical UWB impulse generation based on cross phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

Q. Wang and J. P. Yao, “Switchable optical UWB monocycle and doublet generation using a reconfigurable photonic microwave delay-line filter,” Opt. Express 15(22), 14667–14672 (2007).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. P. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

Ye, T.

Q. J. Chang, Y. Tian, T. Ye, J. M. Gao, and Y. K. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

Zeng, F.

J. P. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

F. Zeng, Q. Wang, and J. P. Yao, “All-optical UWB impulse generation based on cross phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. P. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

Zhang, C. X.

Zhang, W.

Zhang, Y.

Electron. Lett. (1)

F. Zeng, Q. Wang, and J. P. Yao, “All-optical UWB impulse generation based on cross phase modulation and frequency discrimination,” Electron. Lett. 43(2), 119–121 (2007).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcine and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36–47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

F. Zeng and J. P. Yao, “An approach to ultra-wideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. P. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Q. J. Chang, Y. Tian, T. Ye, J. M. Gao, and Y. K. Su, “A 24-GHz ultra-wideband over fiber system using photonic generation and frequency up-conversion,” IEEE Photon. Technol. Lett. 20(19), 1651–1653 (2008).
[CrossRef]

J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber,” IEEE Photon. Technol. Lett. 10(7), 941–943 (1998).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. D. McKinney and A. M. Weiner, “Compensation of the effects of antenna dispersion on UWB waveforms via optical pulse-shaping techniques,” IEEE Trans. Microw. Theory Tech. 54(4), 1681–1686 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (7)

Opt. Lett. (3)

Other (1)

Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Tech. Rep., ET-Docket 98–153, FCC02–48, Apr. (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the proposed UWB pulse generator using a PM-FBG.

Fig. 2
Fig. 2

Reflection spectra of the PM-FBG for different polarization input.

Fig. 3
Fig. 3

The waveforms and spectra of the Gaussian UWB pulses obtained at the output. The (a) generated UWB monocycle and (b) corresponding electrical spectrum, and (c) generated UWB doublet and (d) corresponding electrical spectrum.

Fig. 4
Fig. 4

The inverted version of the pulses shown in Figs. 3(a) and 3(c):(a) Polarity-inverted monocycle pulses. (b) Polarity-inverted doublet pulses.

Fig. 5
Fig. 5

The (a) waveform and (b) corresponding spectrum for higher-order pulses obtained by adjustment of PC2. The blue lines in (b) represent the FCC mask for the corresponding experimental electrical power (black line).

Metrics