Abstract

We recently reported on an Optical Coherence Microscopy technique, whose innovation intrinsically builds on a recently reported - 2 µm invariant lateral resolution by design throughout a 2 mm cubic full-field of view - liquid-lens-based dynamic focusing optical probe [Murali et al., Optics Letters 34, 145-147, 2009]. We shall report in this paper on the image acquisition enabled by this optical probe when combined with an automatic data fusion method developed and described here to produce an in-focus high resolution image throughout the imaging depth of the sample. An African frog tadpole (Xenopus laevis) was imaged with the novel probe and the Gabor-based fusion technique, demonstrating subcellular resolution in a 0.5 mm (lateral) x 0.5 mm (axial) without the need, for the first time, for x-y translation stages, depth scanning, high-cost adaptive optics, or manual intervention. In vivo images of human skin are also presented.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source,” Opt. Lett. 20(13), 1486–1488 (1995).
    [CrossRef] [PubMed]
  2. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).
    [CrossRef] [PubMed]
  3. P. Cimalla, J. Walther, M. Mehner, M. Cuevas, and E. Koch, “Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging,” Opt. Express 17(22), 19486–19500 (2009).
    [CrossRef] [PubMed]
  4. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [CrossRef]
  6. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4–6), 203–207 (1997).
    [CrossRef]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
    [CrossRef]
  8. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14(17), 7661–7669 (2006).
    [CrossRef] [PubMed]
  9. V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
    [CrossRef] [PubMed]
  10. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).
  11. B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
    [CrossRef]
  12. M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett. 30(13), 1680–1682 (2005).
    [CrossRef] [PubMed]
  13. K. S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [CrossRef] [PubMed]
  14. M. D. Sherar, M. B. Noss, and F. S. Foster, “Ultrasound backscatter microscopy images the internal structure of living tumour spheroids,” Nature 330(6147), 493–495 (1987).
    [CrossRef] [PubMed]
  15. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [CrossRef] [PubMed]
  16. J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, Proc. of SPIE Vol. 7168, 71681N (2009).
  17. S. Murali, K. S. Lee, and J. P. Rolland, “Invariant resolution dynamic focus OCM based on liquid crystal lens,” Opt. Express 15(24), 15854–15862 (2007).
    [CrossRef] [PubMed]
  18. P. Meemon, K. S. Lee, S. Murali, and J. P. Rolland, “Optical design of a dynamic focus catheter for high-resolution endoscopic optical coherence tomography,” Appl. Opt. 47(13), 2452–2457 (2008).
    [CrossRef] [PubMed]
  19. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).
    [CrossRef] [PubMed]
  20. S. Murali, Gabor Domain Optical Coherence Microscopy. Ph.D. Dissertation, University of Central Florida (2009)
  21. J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K. S. Lee, “Gabor domain optical coherence tomography,” 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics edited by Adrian Podoleanu, Proc. of SPIE Vol. 7139, 71390F (2008).
  22. J. P. Rolland, J. O'Daniel, C. Akcay, T. DeLemos, K. S. Lee, K. I. Cheong, E. Clarkson, R. Chakrabarti, and R. Ferris, “Task-based optimization and performance assessment in optical coherence imaging,” J. Opt. Soc. Am. A 22(6), 1132–1142 (2005).
    [CrossRef]
  23. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging, Chapter 9, pp. 198–202, Wiley-Interscience (2007).
  24. H. H. Barrett and K. Myers, Foundations of image science. Chapter 4, p. 195, and Chapter 5, pp. 215–227, Hoboken, NJ: John Wiley & Sons (2004).
  25. M. Born and E. Wolf, Principles of Optics (Cambridge Press, Seventh Edition, 2003) Chap. 8, p. 490,.
  26. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41(4), 805–812 (2002).
    [CrossRef] [PubMed]
  27. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24(9), 2527–2542 (2007).
    [CrossRef]
  28. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]

2009

2008

2007

2006

2005

2004

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

2002

1999

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[CrossRef]

1997

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4–6), 203–207 (1997).
[CrossRef]

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, and J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source,” Opt. Lett. 20(13), 1486–1488 (1995).
[CrossRef] [PubMed]

1994

1987

M. D. Sherar, M. B. Noss, and F. S. Foster, “Ultrasound backscatter microscopy images the internal structure of living tumour spheroids,” Nature 330(6147), 493–495 (1987).
[CrossRef] [PubMed]

Aguirre, A.

Akcay, C.

Alberts, D. S.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Arthaber, H.

Barton, J. K.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Beaurepaire, E.

Boccara, A. C.

Bonnema, G. T.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B.

Brezinski, M. E.

Cable, A.

Cable, A. E.

Carney, P. S.

Chakrabarti, R.

Chen, Y.

Cheong, K. I.

Cimalla, P.

Clarkson, E.

Cobb, M. J.

Cuevas, M.

Davis, B. J.

DeLemos, T.

Dickensheets, L. D.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Drexler, W.

Dubois, A.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

Fercher, A. F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

Ferris, R.

Foster, F. S.

M. D. Sherar, M. B. Noss, and F. S. Foster, “Ultrasound backscatter microscopy images the internal structure of living tumour spheroids,” Nature 330(6147), 493–495 (1987).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

Gorczynska, I.

Gordon, L. M.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Hee, M. R.

Hermann, B.

Himmer, A. P.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Hitzenberger, C. K.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

Huber, R.

Ippen, E. P.

Izatt, J. A.

Jiang, J.

Jiang, J. Y.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

Kärtner, F. X.

Koch, E.

Kopf, D.

Korde, V. R.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Krishnamurthy, C.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Lederer, M.

Lee, K. S.

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4–6), 203–207 (1997).
[CrossRef]

Lexer, F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).

Li, X.

Li, X. D.

Liu, X.

Marks, D. L.

Meemon, P.

Mehner, M.

Molebny, S.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).

Morgner, U.

Murali, S.

Nishizawa, N.

Noss, M. B.

M. D. Sherar, M. B. Noss, and F. S. Foster, “Ultrasound backscatter microscopy images the internal structure of living tumour spheroids,” Nature 330(6147), 493–495 (1987).
[CrossRef] [PubMed]

O'Daniel, J.

Owen, G. M.

Pitris, C.

Potsaid, B.

Považay, B.

Qi, B.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Ralston, T. S.

Ranger-Moore, J.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Rolland, J. P.

Saboda, K.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Salasche, S. J.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Sattmann, H.

B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14(17), 7661–7669 (2006).
[CrossRef] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).

Schlachter, S. C.

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4–6), 203–207 (1997).
[CrossRef]

Seitz, W.

Sherar, M. D.

M. D. Sherar, M. B. Noss, and F. S. Foster, “Ultrasound backscatter microscopy images the internal structure of living tumour spheroids,” Nature 330(6147), 493–495 (1987).
[CrossRef] [PubMed]

Slayton, L. D.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Srinivasan, V. J.

Sticker, M.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).

Swanson, E. A.

Tearney, G. J.

Thompson, K. P.

Unterhuber, A.

Vabre, L.

Vitkin, I. A.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Walther, J.

Warneke, J. A.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Wojtkowski, M.

Xu, W.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Yang, X. D. V.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4–6), 203–207 (1997).
[CrossRef]

Appl. Opt.

J. Mod. Opt.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth-independent transversal resolution,” J. Mod. Opt. 46(3), 541–553 (1999).

J. Opt. Soc. Am. A

Lasers Surg. Med.

V. R. Korde, G. T. Bonnema, W. Xu, C. Krishnamurthy, J. Ranger-Moore, K. Saboda, L. D. Slayton, S. J. Salasche, J. A. Warneke, D. S. Alberts, and J. K. Barton, “Using optical coherence tomography to evaluate skin sun damage and precancer,” Lasers Surg. Med. 39(9), 687–695 (2007).
[CrossRef] [PubMed]

Nature

M. D. Sherar, M. B. Noss, and F. S. Foster, “Ultrasound backscatter microscopy images the internal structure of living tumour spheroids,” Nature 330(6147), 493–495 (1987).
[CrossRef] [PubMed]

Opt. Commun.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142(4–6), 203–207 (1997).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1–2), 43–48 (1995).
[CrossRef]

B. Qi, A. P. Himmer, L. M. Gordon, X. D. V. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun. 232(1-6), 123–128 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

S. Murali, Gabor Domain Optical Coherence Microscopy. Ph.D. Dissertation, University of Central Florida (2009)

J. P. Rolland, P. Meemon, S. Murali, A. Jain, N. Papp, K. P. Thompson, and K. S. Lee, “Gabor domain optical coherence tomography,” 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics edited by Adrian Podoleanu, Proc. of SPIE Vol. 7139, 71390F (2008).

J. Holmes and S. Hattersley, “Image blending and speckle noise reduction in multi-beam OCT,” Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIII, Proc. of SPIE Vol. 7168, 71681N (2009).

L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging, Chapter 9, pp. 198–202, Wiley-Interscience (2007).

H. H. Barrett and K. Myers, Foundations of image science. Chapter 4, p. 195, and Chapter 5, pp. 215–227, Hoboken, NJ: John Wiley & Sons (2004).

M. Born and E. Wolf, Principles of Optics (Cambridge Press, Seventh Edition, 2003) Chap. 8, p. 490,.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Mathematical definition of the window for Gabor domain OCM

Fig. 2
Fig. 2

(a) OCM Images of an African Frog Tadpole (Xenopus laevis) each acquired with the optics focused every 100 μm apart in depth from 0 to 0.5 mm; the red arrow points to a dominant feature (b) A plot of each window profile superimposed on top of an averaged reflectivity profile (c) Filtered images (d) The filtered images were then summed using a Gabor-based fusion algorithm.

Fig. 3
Fig. 3

(a) Sub-cellular resolution cross-sectional imaging of an African frog tadpole acquired by GD-OCM (b) in comparison, an image acquired by FD-OCM with the same custom objective.

Fig. 4
Fig. 4

GD-OCM images of fat cells of an ex vivo human breast excised tissue across a 2mm lateral FOV

Fig. 5
Fig. 5

In vivo GD-OCM of human skin across a 2 mm lateral FOV

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E ^ R ( k ) = K R E ^ 0 ( k ) r R exp ( i k z R ) ,
E ^ S ( k ) = K S E ^ 0 ( k ) r S ( z S ) exp ( i k z S ) d z S ,
I ^ D ( k ) = | E ^ R ( k ) + E ^ S ( k ) | 2 ,
I ^ D ( k ) = S ^ ( k ) ( | K R r R | 2 + 2 K R K S r R r S ( z S ) cos ( k ( z S z R ) ) d z S + | K S r S ( z S ) exp ( i k z S ) d z S | 2 ) ,
I ^ int ( k ) = 2 r R S ^ ( K ) r S ( z D ) cos ( k z D ) d z D ,
I ^ int , c ( k ) = 2 r R S ^ ( K ) r S ( z D ) exp ( i k z D ) d z D , = 2 r R S ^ ( k ) { r S ( z D ) } ,
E ^ S ( k ; z S 0 ) = K S E ^ 0 ( k ) + g ( z S z S 0 ) . r S ( z S ) exp ( i k z S ) d z S ,
I ^ int , c ( k ; z D 0 ) = 2 r R S ^ ( k ) g ( z D z D 0 ) . r S ( z D ) exp ( i k z D ) d z D .
F ^ ( k ; z D 0 ) = g ( z D z D 0 ) . r S ( z D ) exp ( i k z D ) d z D .
r S ( z D ) = F ^ ( k ; z D 0 ) . g ( z D z D 0 ) g 2 exp ( i k z D ) d z D 0 d k ,
r S (   z D ) = m = n = F ^ ( k n ; m δ z D ) . g ( z D m δ z D ) g 2 exp ( i k n z D ) ,
r S ( z D ) = m = g ( z D m δ z D ) g 2 n = F ^ ( k n ; m δ z D ) . exp ( i k n z D ) .
r S ( z D ) = m = g ( z D m δ z D ) g 2 . r S , m ( z D , m δ z D ) ,
I O C T ( z D ) = 2 r R 1 { S ^ ( k ) } m = g ( z D m δ z D ) g 2 . r S , m ( z D , m δ z D ) ,
I O C T ( z D ) = m = g ( z D m δ z D ) g 2 .2 r R 1 { S ^ ( k ) } r S , m ( z D , m δ z D ) ,
I O C T ( z D ) = m = g ( z D m δ z D ) g 2 . I O C T , m ( z D , m δ z D ) ,
C M j = z z r j ( z ) / z r j ( z ) .
H M j , L = 0.5 ( C M j + C M j 1 ) , H M j , R = 0.5 ( C M j + C M j + 1 ) .
W j ( z ) = { 1 T [ z ( H M j , L T 2 ) ] , f o r H M j , L T 2 < z < H M j . L + T 2 1 , f o r H M j , L + T 2 z H M j . L T 2 , 1 1 T [ z ( H M j , R T 2 ) ] , f o r H M j , R T 2 < z < H M j . R + T 2 0 , e l s e w h e r e

Metrics