Abstract

Two polarization-independent Michelson fiber interferometers with different optical delays were used to measure the in-band OSNR of an optical signal from 5 to 30dB within an accuracy of 0.5dB. Using an expansion of the amplitude autocorrelation function of the signal around zero delay, it was possible to perform measurements without any prior knowledge of the signal. The system is shown to be immune to the effects of modulation frequency (up to 10G), partially and fully polarized noise, chromatic dispersion and poorly biased modulators.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, M. Preiss, and A. E. Willner, “Optical Performance Monitoring,” J. Lightwave Technol. 22(1), 294–304 (2004).
    [CrossRef]
  2. H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
    [CrossRef]
  3. J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A Review of the Polarization-Nulling Technique for Monitoring Optical-Signal-to-Noise Ratio in Dynamic WDM Networks,” J. Lightwave Technol. 24(11), 4162–4171 (2006).
    [CrossRef]
  4. C. Xie, D. C. Kilper, L. Moller, and R. Ryf, “Orthogonal-Polarization Heterodyne OSNR Monitoring Insensitive to Polarization-Mode Dispersion and Nonlinear Polarization Scattering,” J. Lightwave Technol. 25(1), 177–183 (2007).
    [CrossRef]
  5. Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
    [CrossRef]
  6. Y. K. Lizé, J. Y. Yang, L. Christen, X. Wu, S. Nuccio, T. Wu, A. E. Willner, R. Kashyap, and F. Séguin, “Simultaneous and Independent Monitoring of OSNR, Chromatic and Polarization Mode Dispersion for NRZ-OOK, DPSK and Duobinary,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThN2.
  7. X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
    [CrossRef]
  8. J. M. Oh, M. Brodsky, L. E. Nelson, G. Cadena, and M. D. Feuer, “Interferometric optical signal-to-noise ratio measurements of telecom signals with degraded extinction ratio,” Opt. Lett. 33(18), 2065–2067 (2008).
    [CrossRef] [PubMed]
  9. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
    [CrossRef]

2008

2007

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

C. Xie, D. C. Kilper, L. Moller, and R. Ryf, “Orthogonal-Polarization Heterodyne OSNR Monitoring Insensitive to Polarization-Mode Dispersion and Nonlinear Polarization Scattering,” J. Lightwave Technol. 25(1), 177–183 (2007).
[CrossRef]

2006

2004

2001

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[CrossRef]

1999

H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
[CrossRef]

1991

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[CrossRef]

Bach, R.

Blumenthal, D. J.

Brodsky, M.

Buhl, L. L.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Cabot, S.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Cadena, G.

Chandrasekhar, S.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Chen, Z.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[CrossRef]

Choi, H. Y.

Chung, Y. C.

Davis, M. A.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[CrossRef]

Einstein, D.

Feuer, M. D.

Fu, L.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[CrossRef]

Kang, I.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Kao, Y.-H.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[CrossRef]

Kilper, D. C.

Landolsi, T.

Lee, J. H.

Liu, X.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

Marrone, M. J.

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[CrossRef]

Moller, L.

Nelson, L. E.

Oh, J. M.

Ostar, L.

Preiss, M.

Ryf, R.

Shin, S. K.

Suzuki, H.

H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
[CrossRef]

Takachio, N.

H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
[CrossRef]

Tao, Z.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[CrossRef]

Willner, A. E.

Wu, D.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[CrossRef]

Xie, C.

Xu, A.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[CrossRef]

Electron. Lett.

H. Suzuki and N. Takachio, “Optical signal quality monitor built into WDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electron. Lett. 35(10), 836–837 (1999).
[CrossRef]

A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation-insensitive fibre optic Michelson interferometer,” Electron. Lett. 27(6), 518–520 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Liu, Y.-H. Kao, S. Chandrasekhar, I. Kang, S. Cabot, and L. L. Buhl, “OSNR Monitoring Method for OOK and DPSK Based on Optical Delay Interferometer,” IEEE Photon. Technol. Lett. 19(15), 1172–1174 (2007).
[CrossRef]

J. Lightwave Technol.

Microw. Opt. Technol. Lett.

Z. Tao, Z. Chen, L. Fu, D. Wu, and A. Xu, “Monitoring of OSNR by using a Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 30(1), 63–65 (2001).
[CrossRef]

Opt. Lett.

Other

Y. K. Lizé, J. Y. Yang, L. Christen, X. Wu, S. Nuccio, T. Wu, A. E. Willner, R. Kashyap, and F. Séguin, “Simultaneous and Independent Monitoring of OSNR, Chromatic and Polarization Mode Dispersion for NRZ-OOK, DPSK and Duobinary,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThN2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Interferometer setup, PD: photodiode, PZ: Piezo crystal; Int1 and 2: interferometers; (b) Interferometer transmission.

Fig. 2
Fig. 2

OSNR monitoring setup

Fig. 3
Fig. 3

(a) OSNR measurement using CW source; (b) OSNR measurement using a source modulated at 10G. Outer dashed lines represent an error of ± 0.5 dB.

Fig. 4
Fig. 4

(a) OSNR measured using a 10G NRZ-OOK signal with 600ps/nm dispersion with the signal eye-diagram shown inset; (b) OSNR results in the case of unpolarised noise and fully polarized noise. Outer dashed lines represent an error of ± 0.5dB.

Fig. 5
Fig. 5

(a) OSNR results when the MZ modulator used to generate the 10G signal is poorly biased; (b) OSNR monitoring results with a 5G NRZ-OOK signal and (c) a 2G NRZ-OOK. Outer dashed lines represent an error of ± 0.5dB.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

e o u t ( t ) = K d E ( t + τ d ) exp ( j 2 π f 0 ( t + τ d ) ) + K p E ( t + τ p ) exp ( j 2 π f 0 ( t + τ p ) )
n o u t ( t ) = K d N ( t + τ d ) exp ( j 2 π f 0 ( t + τ d ) ) + K p N ( t + τ p ) exp ( j 2 π f 0 ( t + τ p ) )
V = C | e o u t ( t ) + n o u t ( t ) | 2 ¯
N ( t ) ¯ = 0 , N ( t ) N ( t ) ¯ = P n N ( t ) N ( t + τ ) ¯ = F ( f ) exp ( j 2 π f τ ) d f N ( t ) N ( t + τ ) ¯ = F ( f ) exp ( j 2 π f τ ) d f F ( f ) + F ( f ) 2 exp ( j 2 π f τ ) d f γ n ( τ ) P n
E ( t ) E ( t ) ¯ = P s E ( t ) E ( t + τ ) ¯ = S ( f ) exp ( j 2 π f τ ) d f E ( t ) E ( t + τ ) ¯ = S ( f ) exp ( j 2 π f τ ) d f S ( f ) + S ( f ) 2 exp ( j 2 π f τ ) d f γ s ( τ ) P s
V = C [ ( K d + K p ) ( P s + P n ) + 2 K d K p × cos ( 2 π f 0 ( τ d τ p ) ) ( P s γ s ( τ d τ p ) + P n γ n ( τ d τ p ) ) ]
V = C [ ( K d + K p ) ( P s + P n ) + 2 K d K p × cos ( 2 π f 0 ( τ d τ p ) ) ( P s γ s ( τ d ) + P n γ n ( τ d ) ) ]
V max = C [ ( K d + K p ) ( P s + P n ) + 2 K d K p ( P s γ s ( τ d ) + P n γ n ( τ d ) ) ]
V min = C [ ( K d + K p ) ( P s + P n ) 2 K d K p ( P s γ s ( τ d ) + P n γ n ( τ d ) ) ]
V ave V max + V min 2 = C ( K d + K p ) ( P s + P n )
V diff V max V min 2 = 2 C K d K p ( P s γ s ( τ d ) + P n γ n ( τ d ) )
γ s ( τ d ) + r γ n ( τ d ) 1 + r = V diff ( K d + K p ) V ave 2 K d K p = μ ( 2 K d K p ( K d + K p ) ) M
r = γ s ( τ d ) M M γ n ( τ d )
OSNR = 10 log 10 ( NEB ( nm ) r × 0 . 1 ( nm ) ) = 10 log 10 ( r ) + 10 log 10 ( NEB ( nm ) 0 . 1 ( nm ) )
γ s ( τ d ) = 1 k = 1 K c k τ d 2 k .
k = 1 K c k τ d , q 2 k + r ( M q γ n ( τ d , q ) ) = 1 M q

Metrics