Abstract

We comprehensively investigated the concentration effect of dispersed single-walled carbon nanotubes (SWCNTs) in polymer films for being a saturable absorber (SA) to stabilize the mode locking performance of the erbium-doped fiber laser (EDFL) pulse through the diagnosis of its nonlinear properties of SA. The measured modulation depth was from 1 to 4.5% as the thickness increased 18 to 265 μm. The full-width half-maximum (FWHM) of the stable mode-locked EDFL (MLEDFL) pulse decreased from 3.43 to 2.02 ps as the concentrations of SWCNTs SA increased 0.125 to 0.5 wt%. At constant concentration of 0.125 wt%, the similar pulse shortening effect of the MLEDFL was also observed when the FWHM decreased from 3.43 to 1.85 ps as the thickness of SWCNTs SA increased 8 to 100 μm. With an erbium-doped fiber length of 80 cm, the shortest pulse width of 1.85 ps were achieved at 1.56μm with a repetition rate of 11.1MHz and 0.2 mW of the output power under an output coupling ratio of 5%. An in-depth study on the stable mode-locked pulse formation employing SWCNTs SA, it is possible to fabricate the SWCNT films for use in high performance MLEDFL and utilization of many other low-cost nanodevices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, “Ultrafast fiber oscillators,” (Marcel Dekker, 2003), Chap.3.
  2. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
    [CrossRef] [PubMed]
  3. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [CrossRef]
  4. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [CrossRef] [PubMed]
  5. U. Keller, W. H. Knox, and H. Roskos, “Coupled-cavity resonant passive mode-locked Ti:sapphire laser,” Opt. Lett. 15(23), 1377–1379 (1990).
    [CrossRef] [PubMed]
  6. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
    [CrossRef]
  7. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [CrossRef]
  8. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes,” Opt. Express 13(20), 8025–8031 (2005).
    [CrossRef] [PubMed]
  9. K. H. Fong, K. Kikuchi, C. S. Goh, S. Y. Set, R. Grange, M. Haiml, A. Schlatter, and U. Keller, “Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film,” Opt. Lett. 32(1), 38–40 (2007).
    [CrossRef]
  10. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, and U. Griebner, “Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(7), 729–731 (2008).
    [CrossRef] [PubMed]
  11. A. Ugawa, A. G. Rinzler, and D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60(16), R11305–R11308 (1999).
    [CrossRef]
  12. M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
    [CrossRef]
  13. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett. 3(2), 269–273 (2003).
    [CrossRef]
  14. M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
    [CrossRef] [PubMed]
  15. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
    [CrossRef]

2009

2008

2007

2005

2004

2003

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett. 3(2), 269–273 (2003).
[CrossRef]

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

2002

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
[CrossRef]

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

2000

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

1999

A. Ugawa, A. G. Rinzler, and D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60(16), R11305–R11308 (1999).
[CrossRef]

1994

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[CrossRef]

1990

1988

Aguiló, M.

Aitchison, B.

Ajayan, P. M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

Allen, M. J.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Bergey, D. M.

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett. 3(2), 269–273 (2003).
[CrossRef]

Brown, D. P.

Chen, Y.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

Cho, W. B.

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[CrossRef]

Díaz, F.

Doran, N. J.

Duling, I. N.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[CrossRef]

Fong, K. H.

Goh, C. S.

Grange, R.

Griebner, U.

Haddon, R. C.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
[CrossRef]

Haiml, M.

Hakulinen, T.

Hamon, M. A.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
[CrossRef]

Härkönen, A.

Haroz, E. H.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Hauge, R. H.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

Hu, H.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
[CrossRef]

Islam, M. F.

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett. 3(2), 269–273 (2003).
[CrossRef]

Itkis, M. E.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
[CrossRef]

Itoga, E.

Jablonski, M.

Johnson, A. T.

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett. 3(2), 269–273 (2003).
[CrossRef]

Kaskela, A.

Kataura, H.

Kauppinen, E. I.

Kazaoui, S.

Keller, U.

Kikuchi, K.

Kittrell, C.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Kivistö, S.

Knox, W. H.

Lee, S.

Lu, T.-M.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

Mateos, X.

Meng, M. E.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
[CrossRef]

Miller, M. K.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Minami, N.

Minoshima, K.

Miyashita, K.

Moore, V. C.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Nasibulin, A. G.

Niyogi, S.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
[CrossRef]

Okhotnikov, O. G.

Petrov, V.

Pujol, M. C.

Raravikar, N. R.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

Rinzler, A. G.

A. Ugawa, A. G. Rinzler, and D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60(16), R11305–R11308 (1999).
[CrossRef]

Rivier, S.

Rojas, E.

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett. 3(2), 269–273 (2003).
[CrossRef]

Roskos, H.

Rotermund, F.

Sakakibara, Y.

Schadler, L. S.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

Schibli, T. R.

Schlatter, A.

Schmidt, A.

Set, S. Y.

Smalley, R. E.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Steinmeyer, G.

Strano, M. S.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Tanaka, Y.

Tanner, D. B.

A. Ugawa, A. G. Rinzler, and D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60(16), R11305–R11308 (1999).
[CrossRef]

Tokumoto, M.

Ugawa, A.

A. Ugawa, A. G. Rinzler, and D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60(16), R11305–R11308 (1999).
[CrossRef]

Wang, G.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

Wood, D.

Yaguchi, H.

Yim, J. H.

Yodh, A. G.

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett. 3(2), 269–273 (2003).
[CrossRef]

Zhang, X.-C.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

Zhao, Y.-P.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

Appl. Phys. Lett.

Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, and X.-C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm,” Appl. Phys. Lett. 81(6), 975 (2002).
[CrossRef]

IEEE J. Quantum Electron.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber lasers,” IEEE J. Quantum Electron. 30(6), 1469–1477 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[CrossRef]

J. Lightwave Technol.

J. Nanosci. Nanotechnol.

M. S. Strano, V. C. Moore, M. K. Miller, M. J. Allen, E. H. Haroz, C. Kittrell, R. H. Hauge, and R. E. Smalley, “The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes,” J. Nanosci. Nanotechnol. 3(1), 81–86 (2003).
[CrossRef] [PubMed]

Nano Lett.

M. E. Itkis, S. Niyogi, M. E. Meng, M. A. Hamon, H. Hu, and R. C. Haddon, “Spectroscopic study of the Fermi level electronic structure of single-walled carbon nanotubes,” Nano Lett. 2(2), 155–159 (2002).
[CrossRef]

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, “High weight fraction surfactant solubilization of single-wall carbon nanotubes in water,” Nano Lett. 3(2), 269–273 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Ugawa, A. G. Rinzler, and D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60(16), R11305–R11308 (1999).
[CrossRef]

Other

M. E. Fermann, “Ultrafast fiber oscillators,” (Marcel Dekker, 2003), Chap.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup of EDFL ring incorporating SWCNTs SA.

Fig. 2
Fig. 2

The pulse train of mode-locked EDFL ring output observed from oscilloscope

Fig. 3
Fig. 3

Metallographic photos of SWCNTs SA under concentrations of (a) 0.5 and (b) 1 wt%.

Fig. 4
Fig. 4

Linear optical absorbance of SWCNTs SA.

Fig. 5
Fig. 5

Nonlinear transmission as a function of input intensity with 100 μm thickness of the SWCNTs SA.

Fig. 6
Fig. 6

Modulation depth and nonsaturable losses versus thickness of the SWCNTs SA.

Fig. 7
Fig. 7

CW and ML threshold pump power versus thickness of the SWCNTs SA.

Fig. 8
Fig. 8

Autocorrelator trace and optical spectrum (inset) of MLEDFL with 0.125 wt% concentration and 8 μm thickness of the SWCNTs SA.

Fig. 9
Fig. 9

Autocorrelator trace and optical spectrum (inset) of MLEDFL with 0.5 wt% concentration and 8 μm thickness of the SWCNTs SA.

Fig. 10
Fig. 10

Autocorrelator trace and optical spectrum (inset) of MLEDFL with 0.125 wt% concentration and 100 μm thickness of the SWCNTs SA.

Fig. 11
Fig. 11

FWHM of pulse width and 3-dB spectral bandwidth of MLEDFL versus (a) concentration (b) thickness of SWCNTs SA.

Fig. 12
Fig. 12

Time-bandwidth product as a function of ML ring laser cavity length

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( I ) = exp ( [ α ( I ) + α n s ] L ) ,
α ( I ) = α 0 ( 1 + I I s a t ) 1 ,

Metrics