Abstract

A high-accuracy measurement method for the noncircularity (ellipticity) of silica glass fibers is demonstrated. This method makes use of the phase velocity difference between two eigen polarization modes of the lowest-order acoustic flexural wave in an optical fiber. The relationship between the acoustic phase velocity difference and the fiber ellipticity is formulated. Three types of optical fibers were examined; photonic crystal fiber, elliptical core fiber, and standard single-mode fiber. Fiber ellipticity of less than 0.001 was successfully measured.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Langli and K. Bløtekjær, “Effect of acoustic birefringence on acoustooptic interaction in birefrengent two-mode optical fibers,” J. Lightwave Technol. 21(2), 528–535 (2003).
    [CrossRef]
  2. S. D. Lim, H. C. Park, I. K. Hwang, and B. Y. Kim, “Combined effects of optical and acoustic birefringence on acousto-optic mode coupling in photonic crystal fiber,” Opt. Express 16(9), 6125–6133 (2008).
    [CrossRef] [PubMed]
  3. M. W. Haakestad and H. E. Engan, “Acoustooptic characterization of a birefringent two-mode photonic crystal fiber,” Opt. Express 14(16), 7319–7328 (2006).
    [CrossRef] [PubMed]
  4. D.-I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, “Tunable acoustic gratings in solid-core photonic bandgap fiber,” Opt. Express 15(6), 3513–3518 (2007).
    [CrossRef] [PubMed]
  5. H. M. Presby, “Ellipticity measurement of optical fibers,” Appl. Opt. 15(2), 492–494 (1976).
    [CrossRef] [PubMed]
  6. H. Wang, “Theory and experiments on diffraction patterns of an optical fiber with slight ellipticity: a perturbation method,” J. Opt. Soc. Am. A 13(6), 1199–1203 (1996).
  7. R. James, Rochester, “Measurement of optical fiber diameter,” United States Patent US5264909 http://www.freepatentsonline.com/5264909.pdf
  8. N. Gisin, R. Passy, and B. Perny, “Optical Fiber Characterization by Simultaneous Measurement of the Transmitted and Refracted Near Field,” J. Lightwave Technol. 11(11), 1875–1883 (1993).
    [CrossRef]
  9. J. Jasapara, E. Monberg, F. DiMarcello, and J. W. Nicholson, “Accurate noncontact optical fiber diameter measurement with spectral interferometry,” Opt. Lett. 28(8), 601–603 (2003).
    [CrossRef] [PubMed]
  10. J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherent tomography – a new platform for measurement of standard and microstructured fiber dimension,” IEE Proc., Optoelectron. 153(5), 229–234 (2006).
    [CrossRef]
  11. H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
    [CrossRef]
  12. S. D. Lim, H. C. Park, and B. Y. Kim, “Twist effect on spectral properties of two-mode fiber acousto-optic filters,” Opt. Express 16(17), 13042–13051 (2008).
    [CrossRef] [PubMed]
  13. M. W. Haakestad and H. E. Engan, “Acoustooptic properties of a weakly multimode solid core photonic crystal fiber,” J. Lightwave Technol. 24(2), 838–845 (2006).
    [CrossRef]

2008 (2)

2007 (1)

2006 (3)

2003 (2)

1996 (1)

H. Wang, “Theory and experiments on diffraction patterns of an optical fiber with slight ellipticity: a perturbation method,” J. Opt. Soc. Am. A 13(6), 1199–1203 (1996).

1993 (1)

N. Gisin, R. Passy, and B. Perny, “Optical Fiber Characterization by Simultaneous Measurement of the Transmitted and Refracted Near Field,” J. Lightwave Technol. 11(11), 1875–1883 (1993).
[CrossRef]

1988 (1)

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
[CrossRef]

1976 (1)

Blake, J. N.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
[CrossRef]

Bløtekjær, K.

DiMarcello, F.

Eggleton, B. J.

Engan, H. E.

Gisin, N.

N. Gisin, R. Passy, and B. Perny, “Optical Fiber Characterization by Simultaneous Measurement of the Transmitted and Refracted Near Field,” J. Lightwave Technol. 11(11), 1875–1883 (1993).
[CrossRef]

Haakestad, M. W.

Hwang, I. K.

Jasapara, J.

Jasapara, J. C.

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherent tomography – a new platform for measurement of standard and microstructured fiber dimension,” IEE Proc., Optoelectron. 153(5), 229–234 (2006).
[CrossRef]

Kim, B. Y.

Langli, B.

Lim, S. D.

Monberg, E.

Nicholson, J. W.

Park, H. C.

Passy, R.

N. Gisin, R. Passy, and B. Perny, “Optical Fiber Characterization by Simultaneous Measurement of the Transmitted and Refracted Near Field,” J. Lightwave Technol. 11(11), 1875–1883 (1993).
[CrossRef]

Perny, B.

N. Gisin, R. Passy, and B. Perny, “Optical Fiber Characterization by Simultaneous Measurement of the Transmitted and Refracted Near Field,” J. Lightwave Technol. 11(11), 1875–1883 (1993).
[CrossRef]

Presby, H. M.

Shaw, H. J.

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
[CrossRef]

Steinvurzel, P.

Wang, H.

H. Wang, “Theory and experiments on diffraction patterns of an optical fiber with slight ellipticity: a perturbation method,” J. Opt. Soc. Am. A 13(6), 1199–1203 (1996).

Wielandy, S.

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherent tomography – a new platform for measurement of standard and microstructured fiber dimension,” IEE Proc., Optoelectron. 153(5), 229–234 (2006).
[CrossRef]

Yablon, A. D.

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherent tomography – a new platform for measurement of standard and microstructured fiber dimension,” IEE Proc., Optoelectron. 153(5), 229–234 (2006).
[CrossRef]

Yeom, D.-I.

Appl. Opt. (1)

IEE Proc., Optoelectron. (1)

J. C. Jasapara, S. Wielandy, and A. D. Yablon, “Fourier domain optical coherent tomography – a new platform for measurement of standard and microstructured fiber dimension,” IEE Proc., Optoelectron. 153(5), 229–234 (2006).
[CrossRef]

J. (1)

H. Wang, “Theory and experiments on diffraction patterns of an optical fiber with slight ellipticity: a perturbation method,” J. Opt. Soc. Am. A 13(6), 1199–1203 (1996).

J. Lightwave Technol. (4)

N. Gisin, R. Passy, and B. Perny, “Optical Fiber Characterization by Simultaneous Measurement of the Transmitted and Refracted Near Field,” J. Lightwave Technol. 11(11), 1875–1883 (1993).
[CrossRef]

B. Langli and K. Bløtekjær, “Effect of acoustic birefringence on acoustooptic interaction in birefrengent two-mode optical fibers,” J. Lightwave Technol. 21(2), 528–535 (2003).
[CrossRef]

H. E. Engan, B. Y. Kim, J. N. Blake, and H. J. Shaw, “Propagation and optical interaction of guided acoustic waves in two-mode optical fibers,” J. Lightwave Technol. 6(3), 428–436 (1988).
[CrossRef]

M. W. Haakestad and H. E. Engan, “Acoustooptic properties of a weakly multimode solid core photonic crystal fiber,” J. Lightwave Technol. 24(2), 838–845 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

R. James, Rochester, “Measurement of optical fiber diameter,” United States Patent US5264909 http://www.freepatentsonline.com/5264909.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Acoustic dispersion relation

Fig. 2
Fig. 2

Description of the effective diameters of the optical fiber with ellipticity

Fig. 3
Fig. 3

(a) Experimental setup for the measurement of fiber ellipticity (RS: rotation stage) (b) Measurement of interference with changing the distance between the sensing fiber and the test fiber (c) Output signal patterns for different distances between the sensing fiber and the test fiber. (E1 and E2 denote reflected electric fields)

Fig. 4
Fig. 4

Errors in the value of α as a function of the applied acoustic frequency for optical fibers with different ellipticities

Fig. 5
Fig. 5

Intensity modulation signals exhibiting maximal temporal phase difference for the PCF at an applied acoustic frequency of 3.3 MHz, Fitting curves are overlaid

Fig. 6
Fig. 6

Intensity modulation signals with maximal temporal phase difference at 2 MHz for standard SMF, Fitting curves are overlaid.

Tables (2)

Tables Icon

Table 1 The proportionality constant, α ( × 10−3 m)

Tables Icon

Table 2 Comparison of our measurements with the results of fiber geometry analyzer

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

f D 3764 ( m / s ) 2.546 ( D Λ ) 2 2.372 ( D Λ ) 3
ε = D m a j o r D m i n o r ( D m a j o r + D m i n o r ) / 2 = Δ D D
I = | E 1 + E 2 e 2 i k d | 2 w h e r e , d = d 0 + a 0 sin ( k a l ω a t )
I = E 1 2 + E 2 2 + 2 E 1 E 2 cos ( 2 k d 0 + 2 k a 0 sin ( k a l ω a t ) )
I E 1 2 + E 2 2 ± 4 E 1 E 2 k a 0 sin ( k a l ω a t )
I E 1 2 + E 2 2 ± 2 E 1 E 2
Δ φ = | Δ k a l | w h e r e , Δ k a = 2 π ( Λ m a j Λ m i n Λ m a j Λ m i n ) 2 π Δ Λ Λ 2
ε = Δ D D Λ 5.092 Λ 7.116 D 2.546 Λ 4.744 D ( Δ φ 2 π l ) = α ( Δ φ 2 π l )
f ( D + Δ D ) 3764 ( m / s ) = 2.546 ( D + Δ D Λ + Δ Λ ) 2 2.372 ( D + Δ D Λ + Δ Λ ) 3
f ( D + Δ D ) 3764 ( m / s ) = 2.546 ( D Λ ) 2 ( 1 + Δ D D ) 2 ( 1 + Δ Λ Λ ) 2 2.372 ( D Λ ) 3 ( 1 + Δ D D ) 3 ( 1 + Δ Λ Λ ) 3
f Δ D 3764 ( m / s ) [ 2 × 2.546 ( D Λ ) 2 3 × 2.372 ( D Λ ) 3 ] ( Δ D D Δ Λ Λ )
Δ D D 5.092 Λ 7.116 D 2.546 Λ 4.744 D ( Δ Λ Λ )
ε = Δ D D Λ 5.092 Λ 7.116 D 2.546 Λ 4.744 D ( Δ φ 2 π l )

Metrics