Abstract

Terahertz time-domain reflectometry was used to monitor the progress of a thermally grown oxide layer and stress-induced, air-filled voids at the interface of an Yttria-stabilized-zirconia ceramic thermal-barrier coating and a metal surface. The thicknesses of these internal layers, observed in scanning-electron-microscope images to increase with thermal-exposure time, have been resolved – even when changing on the order of only a few micrometers – by distinguishing not only increased delays in the arrival times of terahertz pulses reflected from this multilayer structure, but also changes in the width and shape of the pulses. These unique features can be used to predict the lifetime of thermal-barrier coatings and to indicate or warn of spallation conditions. The trends of the experimental results are also confirmed through Fresnel-reflection time-domain simulations.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Cheville, M. T. Reiten, J. O'Hara, and D. R. Grischkowsky, “THz time domain sensing and imaging,” R. J. Hwu, and L. W. Dwight, eds. (SPIE, 2004), pp. 196–206.
  2. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J.Sel. Tops. Quantum 2(3), 679–692 (1996).
    [CrossRef]
  3. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38(2), 409–415 (1999).
    [CrossRef]
  4. T. Yasui, T. Yasuda, K.-i. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
    [CrossRef] [PubMed]
  5. O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines–Part I: Experiments,” Surf. Coat. Tech. 202(20), 5027–5032 (2008).
    [CrossRef]
  6. V. K. Tolpygo and D. R. Clarke, “The effect of oxidation pre-treatment on the cyclic life of EB-PVD thermal barrier coatings with platinum-aluminide bond coats,” Surf. Coat. Tech. 200(5-6), 1276–1281 (2005).
    [CrossRef]
  7. S. R. Choi, D. Zhu, and R. A. Miller, “Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings,” JInt. J. . Appl. Ceram Technol. 1, 330–342 (2004).
    [CrossRef]
  8. M. Y. He, J. W. Hutchinson, and A. G. Evans, “Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling,” Mater. Sci. Eng. A 345(1-2), 172–178 (2003).
    [CrossRef]
  9. W. A. Ellingson, R. J. Visher, R. S. Lipanovich, and C. M. Deemer, “Optical NDT Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64, 45–51 (2006).
  10. S. Song and P. Xiao, “An impedance spectroscopy study of high-temperature oxidation of thermal barrier coatings,” Mater. Sci. Eng. B 97(1), 46–53 (2003).
    [CrossRef]
  11. K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
    [CrossRef]
  12. L. Hess, and R. A. Cheville, “Nondestructive evaluation of ceramic bearings using THz impulse ranging,” in Conference on Lasers and Electro-Optics (2004), p. 2, vol.1.
  13. J. I. Eldridge and T. J. Bencic, “Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence,” Surf. Coat. Tech. 201(7), 3926–3930 (2006).
    [CrossRef]
  14. D.J. Lee and J.F. Whitaker, “Spectro-temporal and echo-response analysis of arbitrary optical multilayer systems,” submitted to Appl. Optics, Nov. 2009.
  15. N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
    [CrossRef]

2008

O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines–Part I: Experiments,” Surf. Coat. Tech. 202(20), 5027–5032 (2008).
[CrossRef]

2006

W. A. Ellingson, R. J. Visher, R. S. Lipanovich, and C. M. Deemer, “Optical NDT Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64, 45–51 (2006).

J. I. Eldridge and T. J. Bencic, “Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence,” Surf. Coat. Tech. 201(7), 3926–3930 (2006).
[CrossRef]

2005

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
[CrossRef]

V. K. Tolpygo and D. R. Clarke, “The effect of oxidation pre-treatment on the cyclic life of EB-PVD thermal barrier coatings with platinum-aluminide bond coats,” Surf. Coat. Tech. 200(5-6), 1276–1281 (2005).
[CrossRef]

T. Yasui, T. Yasuda, K.-i. Sawanaka, and T. Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in paint film,” Appl. Opt. 44(32), 6849–6856 (2005).
[CrossRef] [PubMed]

2004

S. R. Choi, D. Zhu, and R. A. Miller, “Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings,” JInt. J. . Appl. Ceram Technol. 1, 330–342 (2004).
[CrossRef]

2003

M. Y. He, J. W. Hutchinson, and A. G. Evans, “Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling,” Mater. Sci. Eng. A 345(1-2), 172–178 (2003).
[CrossRef]

S. Song and P. Xiao, “An impedance spectroscopy study of high-temperature oxidation of thermal barrier coatings,” Mater. Sci. Eng. B 97(1), 46–53 (2003).
[CrossRef]

2000

K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
[CrossRef]

1999

1996

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J.Sel. Tops. Quantum 2(3), 679–692 (1996).
[CrossRef]

Ando, A.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
[CrossRef]

Araki, T.

Beck, T.

O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines–Part I: Experiments,” Surf. Coat. Tech. 202(20), 5027–5032 (2008).
[CrossRef]

Bencic, T. J.

J. I. Eldridge and T. J. Bencic, “Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence,” Surf. Coat. Tech. 201(7), 3926–3930 (2006).
[CrossRef]

Choi, S. R.

S. R. Choi, D. Zhu, and R. A. Miller, “Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings,” JInt. J. . Appl. Ceram Technol. 1, 330–342 (2004).
[CrossRef]

Clarke, D. R.

V. K. Tolpygo and D. R. Clarke, “The effect of oxidation pre-treatment on the cyclic life of EB-PVD thermal barrier coatings with platinum-aluminide bond coats,” Surf. Coat. Tech. 200(5-6), 1276–1281 (2005).
[CrossRef]

Coutaz, J.-L.

Deemer, C. M.

W. A. Ellingson, R. J. Visher, R. S. Lipanovich, and C. M. Deemer, “Optical NDT Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64, 45–51 (2006).

Duvillaret, L.

Eldridge, J. I.

J. I. Eldridge and T. J. Bencic, “Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence,” Surf. Coat. Tech. 201(7), 3926–3930 (2006).
[CrossRef]

Ellingson, W. A.

W. A. Ellingson, R. J. Visher, R. S. Lipanovich, and C. M. Deemer, “Optical NDT Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64, 45–51 (2006).

Evans, A. G.

M. Y. He, J. W. Hutchinson, and A. G. Evans, “Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling,” Mater. Sci. Eng. A 345(1-2), 172–178 (2003).
[CrossRef]

Garet, F.

Gell, M.

K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
[CrossRef]

He, M. Y.

M. Y. He, J. W. Hutchinson, and A. G. Evans, “Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling,” Mater. Sci. Eng. A 345(1-2), 172–178 (2003).
[CrossRef]

Herzog, R.

O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines–Part I: Experiments,” Surf. Coat. Tech. 202(20), 5027–5032 (2008).
[CrossRef]

Hutchinson, J. W.

M. Y. He, J. W. Hutchinson, and A. G. Evans, “Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling,” Mater. Sci. Eng. A 345(1-2), 172–178 (2003).
[CrossRef]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J.Sel. Tops. Quantum 2(3), 679–692 (1996).
[CrossRef]

Jordan, E. H.

K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
[CrossRef]

Kirihara, S.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
[CrossRef]

Lipanovich, R. S.

W. A. Ellingson, R. J. Visher, R. S. Lipanovich, and C. M. Deemer, “Optical NDT Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64, 45–51 (2006).

Matsumoto, N.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
[CrossRef]

Miller, R. A.

S. R. Choi, D. Zhu, and R. A. Miller, “Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings,” JInt. J. . Appl. Ceram Technol. 1, 330–342 (2004).
[CrossRef]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J.Sel. Tops. Quantum 2(3), 679–692 (1996).
[CrossRef]

Miyamoto, Y.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
[CrossRef]

Nakagawa, T.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
[CrossRef]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J.Sel. Tops. Quantum 2(3), 679–692 (1996).
[CrossRef]

Padture, N. P.

K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
[CrossRef]

Sakabe, Y.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
[CrossRef]

Sawanaka, K.-i.

Schlichting, K. W.

K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
[CrossRef]

Singheiser, L.

O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines–Part I: Experiments,” Surf. Coat. Tech. 202(20), 5027–5032 (2008).
[CrossRef]

Sohn, Y. H.

K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
[CrossRef]

Song, S.

S. Song and P. Xiao, “An impedance spectroscopy study of high-temperature oxidation of thermal barrier coatings,” Mater. Sci. Eng. B 97(1), 46–53 (2003).
[CrossRef]

Steinbrech, R. W.

O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines–Part I: Experiments,” Surf. Coat. Tech. 202(20), 5027–5032 (2008).
[CrossRef]

Tolpygo, V. K.

V. K. Tolpygo and D. R. Clarke, “The effect of oxidation pre-treatment on the cyclic life of EB-PVD thermal barrier coatings with platinum-aluminide bond coats,” Surf. Coat. Tech. 200(5-6), 1276–1281 (2005).
[CrossRef]

Trunova, O.

O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines–Part I: Experiments,” Surf. Coat. Tech. 202(20), 5027–5032 (2008).
[CrossRef]

Vaidyanathan, K.

K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
[CrossRef]

Visher, R. J.

W. A. Ellingson, R. J. Visher, R. S. Lipanovich, and C. M. Deemer, “Optical NDT Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64, 45–51 (2006).

Xiao, P.

S. Song and P. Xiao, “An impedance spectroscopy study of high-temperature oxidation of thermal barrier coatings,” Mater. Sci. Eng. B 97(1), 46–53 (2003).
[CrossRef]

Yasuda, T.

Yasui, T.

Zhu, D.

S. R. Choi, D. Zhu, and R. A. Miller, “Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings,” JInt. J. . Appl. Ceram Technol. 1, 330–342 (2004).
[CrossRef]

Appl. Opt.

IEEE J.Sel. Tops. Quantum

D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J.Sel. Tops. Quantum 2(3), 679–692 (1996).
[CrossRef]

JInt. J. . Appl. Ceram Technol.

S. R. Choi, D. Zhu, and R. A. Miller, “Database of Plasma-Sprayed ZrO2-8wt% Y2O3 Thermal Barrier Coatings,” JInt. J. . Appl. Ceram Technol. 1, 330–342 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of Multilayer Ceramic Photonic Crystals in THz Region,” Jpn. J. Appl. Phys. 44(No. 9B), 7111–7114 (2005).
[CrossRef]

Mater. Eval.

W. A. Ellingson, R. J. Visher, R. S. Lipanovich, and C. M. Deemer, “Optical NDT Methods for Ceramic Thermal Barrier Coatings,” Mater. Eval. 64, 45–51 (2006).

Mater. Sci. Eng. A

K. W. Schlichting, K. Vaidyanathan, Y. H. Sohn, E. H. Jordan, M. Gell, and N. P. Padture, “Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement,” Mater. Sci. Eng. A 291(1-2), 68–77 (2000).
[CrossRef]

M. Y. He, J. W. Hutchinson, and A. G. Evans, “Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling,” Mater. Sci. Eng. A 345(1-2), 172–178 (2003).
[CrossRef]

Mater. Sci. Eng. B

S. Song and P. Xiao, “An impedance spectroscopy study of high-temperature oxidation of thermal barrier coatings,” Mater. Sci. Eng. B 97(1), 46–53 (2003).
[CrossRef]

Surf. Coat. Tech.

O. Trunova, T. Beck, R. Herzog, R. W. Steinbrech, and L. Singheiser, “Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines–Part I: Experiments,” Surf. Coat. Tech. 202(20), 5027–5032 (2008).
[CrossRef]

V. K. Tolpygo and D. R. Clarke, “The effect of oxidation pre-treatment on the cyclic life of EB-PVD thermal barrier coatings with platinum-aluminide bond coats,” Surf. Coat. Tech. 200(5-6), 1276–1281 (2005).
[CrossRef]

J. I. Eldridge and T. J. Bencic, “Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence,” Surf. Coat. Tech. 201(7), 3926–3930 (2006).
[CrossRef]

Other

D.J. Lee and J.F. Whitaker, “Spectro-temporal and echo-response analysis of arbitrary optical multilayer systems,” submitted to Appl. Optics, Nov. 2009.

R. A. Cheville, M. T. Reiten, J. O'Hara, and D. R. Grischkowsky, “THz time domain sensing and imaging,” R. J. Hwu, and L. W. Dwight, eds. (SPIE, 2004), pp. 196–206.

L. Hess, and R. A. Cheville, “Nondestructive evaluation of ceramic bearings using THz impulse ranging,” in Conference on Lasers and Electro-Optics (2004), p. 2, vol.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principal of the thickness and group refractive index measurement by using THz-TDR.

Fig. 2
Fig. 2

SEM images of the YSZ interface (a) before thermal cycling and oxidation, (b) after 100 hours, (c) after 348 hours, (d) after 790 hours, (e) after 1100 hours and (f) after 1350 hours at 1100 °C. Each SEM image is taken at a different location along the cross-section of the multi-layer-sample material system.

Fig. 3
Fig. 3

Simulation results of the reflection of a THz-pulse from the TBC/BC interface for different interface conditions

Fig. 4
Fig. 4

The delay time of the second reflected THz pulse from simulation versus the heating time in furnace

Fig. 5
Fig. 5

THz-TDR experimental Setup

Fig. 6
Fig. 6

Experimental reflected THz transients for a sample heated at 1100 °C for five different accumulated thermal-exposure times between 0 and 1350 hours

Fig. 7
Fig. 7

The delay time of the second reflected THz pulse versus the heating time in furnace

Fig. 8
Fig. 8

Comparison between average TGO thickness from SEM measurements and the delay time of THz pulse.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t = 2 n g d c cos ϕ

Metrics