Abstract

In the present paper we investigate the possibility of narrowing the depth range of a physical Shack – Hartmann (SH) wavefront sensor (WFS) by using coherence gating. For the coherence gating, two low coherence interferometry (LCI) methods are evaluated and proof of principle configurations demonstrated: (i) a time domain LCI method based on phase shifting interferometry and (ii) a spectral domain LCI method, based on tuning a narrow band optical source. The two configurations are used to demonstrate each, the possibility of constructing a coherence gated (CG) SH/WFS. It is shown that these configurations produce spot patterns similar to those provided by a conventional SH/WFS. The two proof of principle configurations are also used to illustrate elimination of stray reflections in the interface optics which normally disturb the operation of conventional SH/WFSs. The speed and noise performance of the two CG-SH/WFS implementations are discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
    [CrossRef] [PubMed]
  3. M. Minsky, “Microscopy apparatus US patent 3013467,” (Ser, 1957).
  4. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  5. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [PubMed]
  6. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
    [CrossRef]
  7. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  8. R. H. Webb, C. M. Penney, and K. P. Thompson, “Measurement of ocular local wavefront distortion with a spatially resolved refractometer,” Appl. Opt. 31(19), 3678–3686 (1992).
    [CrossRef] [PubMed]
  9. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24(14), 951–953 (1999).
    [CrossRef]
  10. A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, and J. Pfund, “Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts,” Appl. Opt. 44(30), 6419–6425 (2005).
    [CrossRef] [PubMed]
  11. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14(2), 518–526 (2006).
    [CrossRef] [PubMed]
  12. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573–577 (2001).
  13. D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026–1030 (2005).
    [CrossRef] [PubMed]
  14. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
    [CrossRef]
  15. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [CrossRef]
  16. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences, 82544799 (2002).
  17. J. R. Fienup and J. J. Miller, “Aberration correction by maximizing generalized sharpness metrics,” J. Opt. Soc. Am. A 20(4), 609–620 (2003).
    [CrossRef]
  18. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
    [CrossRef] [PubMed]
  19. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
    [CrossRef] [PubMed]
  20. M. Feierabend, M. Rückel, and W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett. 29(19), 2255–2257 (2004).
    [CrossRef] [PubMed]
  21. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [CrossRef] [PubMed]
  22. T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
    [CrossRef] [PubMed]
  23. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [CrossRef] [PubMed]
  24. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  25. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
    [CrossRef]
  26. J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” Optical Shop Testing , 501–599 (1992).
  27. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  28. M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Opt. Lett. 31(10), 1462–1464 (2006).
    [CrossRef] [PubMed]
  29. G. Häusler and M. W. Lindner, “““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
    [CrossRef]
  30. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
    [CrossRef] [PubMed]
  31. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Proc. of SPIE, ser. Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components(2002), pp. 148–160.
  32. D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
    [CrossRef] [PubMed]
  33. M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
    [CrossRef] [PubMed]
  34. R. G. Cucu, M. W. Hathaway, A. G. Podoleanu, and R. B. Rosen, “Active axial eye motion tracking by extended range closed loop OPD-locked white light interferometer for combined confocal/en face optical coherence tomography imaging of the human eye fundus in vivo,” (2009), p. 73721R.
  35. J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
    [CrossRef]
  36. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32(14), 2049–2051 (2007).
    [CrossRef] [PubMed]
  37. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
    [CrossRef]
  38. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
    [CrossRef] [PubMed]
  39. A. Gh, Podoleanu, R. G. Cucu, R. B. Rosen, G. M. Dobre, J. A. Rogers, D. A. Jackson, and V. R. Shidlovski, “Adjustable coherence length sources for low-coherence interferometry,” (Proc of SPIE; 2002), pp. 116–124.
  40. E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
    [CrossRef] [PubMed]
  41. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564_1 (1957).
    [CrossRef] [PubMed]
  42. E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
    [CrossRef] [PubMed]
  43. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17(8), 1440–1453 (2000).
    [CrossRef]

2009

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
[CrossRef]

2008

2007

2006

2005

D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026–1030 (2005).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

A. Chernyshov, U. Sterr, F. Riehle, J. Helmcke, and J. Pfund, “Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts,” Appl. Opt. 44(30), 6419–6425 (2005).
[CrossRef] [PubMed]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[CrossRef] [PubMed]

D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
[CrossRef] [PubMed]

E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
[CrossRef] [PubMed]

2004

2003

2002

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

2001

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573–577 (2001).

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eyes wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[CrossRef]

2000

1999

1998

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

G. Häusler and M. W. Lindner, “““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
[CrossRef]

1997

1992

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1987

1957

Adler, D. C.

Ahnelt, P. K.

Amat, J.

J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Anna, T.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Aragón, J. L.

Artal, P.

Bartsch, D. U.

D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026–1030 (2005).
[CrossRef] [PubMed]

Batlle, J.

J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Baumann, B.

Bedford, R. E.

Boccara, C.

Booth, M. J.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Bower, B. A.

Bradu, A.

Bruning, J. H.

J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” Optical Shop Testing , 501–599 (1992).

Burns, D.

Campbell, M.

Carhart, G. W.

Cauwenberghs, G.

Chamot, S. R.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chernyshov, A.

Chinn, S. R.

Choi, S.

Choma, M.

Cohen, M.

Dainty, C.

Delori, F. C.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

M. Feierabend, M. Rückel, and W. Denk, “Coherence-gated wave-front sensing in strongly scattering samples,” Opt. Lett. 29(19), 2255–2257 (2004).
[CrossRef] [PubMed]

Dilworth, W.

Donnelly Iii, W.

Dresel, T.

Drexler, W.

Dubey, S. K.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Dubois, A.

El-Bradey, M. H.

D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026–1030 (2005).
[CrossRef] [PubMed]

El-Musharaf, A.

D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026–1030 (2005).
[CrossRef] [PubMed]

Esposito, S.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fabritius, T.

Feierabend, M.

Fercher, A. F.

Ferguson, R. D.

Fernández, E.

Fernández, E. J.

Fienup, J. R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Freeman, W. R.

D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026–1030 (2005).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gabriele, M.

Girkin, J.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Greivenkamp, J. E.

J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” Optical Shop Testing , 501–599 (1992).

Grieve, K.

Hammer, D.

Häusler, G.

G. Häusler and M. W. Lindner, “““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
[CrossRef]

T. Dresel, G. Häusler, and H. Venzke, “Three-dimensional sensing of rough surfaces by coherence radar,” Appl. Opt. 31(7), 919–925 (1992).
[CrossRef] [PubMed]

Hebert, T.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Helmcke, J.

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

Hofer, H.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hughes, G. W.

Iftimia, N.

Ishikawa, H.

Itagaki, T.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
[CrossRef]

Izatt, J.

Izatt, J. A.

Jones, S. M.

Kagemann, L.

Laut, S.

Le Gargasson, J. F.

Lecaque, R.

Liang, J.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, “““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
[CrossRef]

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Makita, S.

Marsh, P.

Mart, J.

J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Mehta, D. S.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Merino, D.

Miller, J. J.

Moneron, G.

Moreno-Barriuso, E.

Navarro, R.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Olivier, S. S.

Paques, M.

Penney, C. M.

Pfund, J.

Pircher, M.

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573–577 (2001).

Podoleanu, A. G.

Považay, B.

Prieto, P.

Prieto, P. M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Queener, H.

Ridao, P.

J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Riehle, F.

Romero-Borja, F.

Roorda, A.

Rückel, M.

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Sahel, J.

Sarunic, M.

Sarunic, M. V.

Sattmann, H.

Schuman, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573–577 (2001).

Shakher, C.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Simonutti, M.

Singer, B.

Srinivasan, V. J.

Sterr, U.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Thompson, K. P.

Unterhuber, A.

Ustun, T.

Vabre, L.

Venzke, H.

Vorontsov, M. A.

Watanabe, Y.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
[CrossRef]

Webb, R. H.

Weinberg, S.

Werner, J. S.

Williams, D. R.

Wilson, T.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Wollstein, G.

Wyszecki, G.

Yang, C.

Yasuno, Y.

Zawadzki, R. J.

Zhao, M.

Appl. Opt.

Appl. Phys. Lett.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91(18), 181106 (2007).
[CrossRef]

Br. J. Ophthalmol.

D. U. Bartsch, M. H. El-Bradey, A. El-Musharaf, and W. R. Freeman, “Improved visualisation of choroidal neovascularisation by scanning laser ophthalmoscope using image averaging,” Br. J. Ophthalmol. 89(8), 1026–1030 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

G. Häusler and M. W. Lindner, “““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21 (1998).
[CrossRef]

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt. 14(6), 060506 (2009).
[CrossRef]

J. Microsc.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Refract. Surg.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, 573–577 (2001).

Opt. Express

S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14(2), 518–526 (2006).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
[PubMed]

P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, “Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy,” Opt. Express 14(8), 3345–3353 (2006).
[CrossRef] [PubMed]

K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and C. Boccara, “In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express 13(16), 6286–6295 (2005).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express 13(20), 7937–7947 (2005).
[CrossRef] [PubMed]

M. Pircher, B. Baumann, E. Götzinger, H. Sattmann, and C. K. Hitzenberger, “Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction,” Opt. Express 15(25), 16922–16932 (2007).
[CrossRef] [PubMed]

E. J. Fernández, B. Hermann, B. Považay, A. Unterhuber, H. Sattmann, B. Hofer, P. K. Ahnelt, and W. Drexler, “Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina,” Opt. Express 16(15), 11083–11094 (2008).
[CrossRef] [PubMed]

E. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13(2), 400–409 (2005).
[CrossRef] [PubMed]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16(12), 8406–8420 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Optical Shop Testing

J. E. Greivenkamp and J. H. Bruning, “Phase shifting interferometry,” Optical Shop Testing , 501–599 (1992).

Proc. Natl. Acad. Sci. U.S.A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Real-Time Imaging

J. Batlle, J. Mart, P. Ridao, and J. Amat, “A new FPGA/DSP-based parallel architecture for real-time image processing,” Real-Time Imaging 8(5), 345–356 (2002).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, “Adaptive aberration correction in a confocal microscope,” Proceedings of the National Academy of Sciences, 82544799 (2002).

M. Minsky, “Microscopy apparatus US patent 3013467,” (Ser, 1957).

R. G. Cucu, M. W. Hathaway, A. G. Podoleanu, and R. B. Rosen, “Active axial eye motion tracking by extended range closed loop OPD-locked white light interferometer for combined confocal/en face optical coherence tomography imaging of the human eye fundus in vivo,” (2009), p. 73721R.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Proc. of SPIE, ser. Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components(2002), pp. 148–160.

A. Gh, Podoleanu, R. G. Cucu, R. B. Rosen, G. M. Dobre, J. A. Rogers, D. A. Jackson, and V. R. Shidlovski, “Adjustable coherence length sources for low-coherence interferometry,” (Proc of SPIE; 2002), pp. 116–124.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram for the evaluation of interference between multiple beams produced by a lenslet array and a collimated reference beam. OS: optical source; OND: neutral density filter in the object path; RND: neutral density filter in the reference path; RM: reference mirror; BS1 and BS2: 50/50 beam splitters; BS3: 55/45 Beam splitter; LA: Lenslet Array; BK7: dispersion compensating glass; DM: Deformable Mirror; L1: 10x microscope objective; L2: 3 cm focal length lens; L3: 15 cm focal length lens; L4 and L5: 7.5 cm focal length lenses.

Fig. 2
Fig. 2

Images in the top row were of the SH spots with no deformation of the mirror. Images in the bottom row were obtained with further aberrations introduced by deforming the DM, obtained by applying –0.18 V on electrode 30 of the DM. Images in the left column were obtained with the reference arm blocked and according to the conventional procedure in a SH/WFS while in the right column, images were obtained based on the principle of the TD CG-SH/WFS explained in paragraph 4.1.

Fig. 3
Fig. 3

Left: CCD images collected for a fixed wavelength λ = 834 nm and with the reference arm blocked. This shows the stray reflections from the lens L2 as thick diagonal small traces superposed on the reflection due to the object. Right: reference beam on, en-face image inferred from a stack of 40 frames, each obtained at a different wavelength within the tuning range of the SS and according to the procedure described in 4.2. The stray reflections are totally eliminated.

Fig. 4
Fig. 4

Comparison of signal sensitivity of conventional SH/WFS versus CG-SH/WFS using TD/LCI. The peaks in the left bottom corner represent stray reflections totally eliminated when performing coherence gating.

Fig. 5
Fig. 5

SS-LCI. (C)omparison of signal sensitivity of conventional SH/WFS versus CG-SH/WFS using SS/LCI. The peaks in the left bottom corner represent stray reflections totally eliminated when performing coherence gating.

Fig. 6
Fig. 6

Graph of the Fourier transformation of the CCD signal for four values of the swept source tuning bandwidth, Δλ, around a central wavelength, λ, of 845 nm and for δZ = 55 μm. The curves are represented starting from ΔZ/lc ≈3, due to the large value of peak in zero, whose tail is visible as an almost vertical line.

Fig. 7
Fig. 7

Components of the optical paths in the object arm. B: optical path length for the SH spot corresponding to a non-aberrated part of the wavefront; C: optical path length for the SH spot corresponding to an aberrated part of the wavefront; δx represents the lateral deviation of the SH spot from the reference grid node.

Tables (1)

Tables Icon

Table 1 Absolute deviations of SH spots obtained using coherence gating from the SH spots obtained using the conventional SH/WFS, measured in pixels

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I D = ( I 1 ( x , y ) I 3 ( x , y ) ) 2 + ( I 4 ( x , y ) I 2 ( x , y ) ) 2
S C o n v = O N D 2 O
S C G = O N D 2 O R N D 2 R O N D R N D
S C G S c o n v = R N D O N D
( R N D O N D ) 2 = 3 1 3   and  S C G S c o n v = 3 1.73
D = ( C B ) + A
C = δ x 2 + B 2
m = δ x f
m = A 2 r
A max = 2 r 2 f
D max = r 2 + f 2 f + 2 r 2 f = 4.4 m i c r o n s

Metrics