Abstract

We present a model which allows us to accurately simulate the fabrication process of complex-shaped tapered fibers. The range of possible profiles is only limited by the properties of the heat source used to shape the fiber. The model takes into account the motion of the heat source relative to the fiber as well as its temperature distribution. Our measurements and corresponding finite element method (FEM) simulations have shown a strong dependency of the temperature distribution along the fiber axis on the actual diameter of the fiber. The inclusion of this relation in the model proved to be crucial for the accuracy of the results. Our model has been verified experimentally by fabricating tapered fibers with a sinusoidally modulated waist. A comparison to the profile predicted by our model reveals an excellent agreement.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).
  2. R. Zhang, X. Zhang, D. Meiser, and H. Giessen, "Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber," Opt. Express 12,5840-5849 (2004).
    [CrossRef] [PubMed]
  3. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys. Rev. Lett. 45,1095-1098 (1980).
    [CrossRef]
  4. A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  5. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  6. J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
    [CrossRef]
  7. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  8. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005).
    [CrossRef] [PubMed]
  9. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
    [CrossRef]
  10. G. Sague, A. Baade, and A. Rauschenbeutel, "Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres," New J. Phys. 10, 113008 (2008).
    [CrossRef]
  11. R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, "Group velocity dispersion of tapered fibers immersed in different liquids," Opt. Express 12, 1700-1707 (2004).
    [CrossRef] [PubMed]
  12. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  13. L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
    [CrossRef]
  14. F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," J. Lightwave Technol. 6, 1476-1482 (1988).
    [CrossRef]
  15. G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
    [CrossRef]
  16. E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007).
    [CrossRef] [PubMed]
  17. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Carbon dioxide laser fabrication of fused-fiber couplers and tapers," Appl. Opt. 38, 6845-6848 (1999).
    [CrossRef]
  18. A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, "Heat transfer modelling in CO laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
    [CrossRef]
  19. C. E. Chryssou, "Theoretical analysis of tapering fused silica optical fibers using a carbon dioxide laser," Opt. Eng. 38, 1645-1649 (1999).
    [CrossRef]
  20. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Selfcoupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004).
    [CrossRef] [PubMed]
  21. T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  22. A. Konyukhov, L. Melnikov, and Y. Mazhirina, "Dispersive wave generation in microstructured fiber with periodically modulated diameter," Proc. SPIE 6165, 616508 (2006).
    [CrossRef]
  23. M. Stratmann, M. Bohm, and F. Mitschke, "Stable propagation of dark solitons in dispersion maps of either sign of path-average dispersion," Electron. Lett. 37, 1182-1183 (2001).
    [CrossRef]
  24. M. Sumetsky, "Whispering-gallery-bottle microcavities: the three-dimensional etalon," Opt. Lett. 29, 8-10 (2004).
    [CrossRef] [PubMed]
  25. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, "Selective excitation of whispering gallery modes in a novel bottle microresonator," Opt. Express 17, 11916-11925 (2009).
    [CrossRef]
  26. Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72, 031801(R) (2005).
    [CrossRef]
  27. Comsol Multiphysics, Modeling Guide, (Software manual, version 3.3).
  28. F. Richter, "Upsetting and Viscoelasticity of Vitreous SiO2: Experiments, Interpretation and Simulation," PhD thesis, Technische Universit¨at Berlin (2006).
  29. F. Warken and H. Giessen, "Fast profile measurement of micrometer-sized tapered fibers with better than 50 nm accuracy," Opt. Lett. 29, 1727-1729 (2004).
    [CrossRef] [PubMed]

2009

2008

G. Sague, A. Baade, and A. Rauschenbeutel, "Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres," New J. Phys. 10, 113008 (2008).
[CrossRef]

2007

2006

A. Konyukhov, L. Melnikov, and Y. Mazhirina, "Dispersive wave generation in microstructured fiber with periodically modulated diameter," Proc. SPIE 6165, 616508 (2006).
[CrossRef]

2005

L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
[CrossRef]

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005).
[CrossRef] [PubMed]

2004

2003

J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

2001

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

M. Stratmann, M. Bohm, and F. Mitschke, "Stable propagation of dark solitons in dispersion maps of either sign of path-average dispersion," Electron. Lett. 37, 1182-1183 (2001).
[CrossRef]

2000

1999

T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. St. J. Russell, "Carbon dioxide laser fabrication of fused-fiber couplers and tapers," Appl. Opt. 38, 6845-6848 (1999).
[CrossRef]

C. E. Chryssou, "Theoretical analysis of tapering fused silica optical fibers using a carbon dioxide laser," Opt. Eng. 38, 1645-1649 (1999).
[CrossRef]

1998

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, "Heat transfer modelling in CO laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

1997

1992

T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

1988

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," J. Lightwave Technol. 6, 1476-1482 (1988).
[CrossRef]

1980

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys. Rev. Lett. 45,1095-1098 (1980).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Bilodeau, F.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," J. Lightwave Technol. 6, 1476-1482 (1988).
[CrossRef]

Birks, T. A.

Bohm, M.

M. Stratmann, M. Bohm, and F. Mitschke, "Stable propagation of dark solitons in dispersion maps of either sign of path-average dispersion," Electron. Lett. 37, 1182-1183 (2001).
[CrossRef]

Brambilla, G.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
[CrossRef]

Chryssou, C. E.

C. E. Chryssou, "Theoretical analysis of tapering fused silica optical fibers using a carbon dioxide laser," Opt. Eng. 38, 1645-1649 (1999).
[CrossRef]

Dimmick, T. E.

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Dulashko, Y.

Eggleton, B. J.

E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007).
[CrossRef] [PubMed]

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Faucher, S.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," J. Lightwave Technol. 6, 1476-1482 (1988).
[CrossRef]

Feng, X.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
[CrossRef]

Franke, K.

J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
[CrossRef]

Fu, L. B.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Geoff, T. S.

L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

Giessen, H.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys. Rev. Lett. 45,1095-1098 (1980).
[CrossRef]

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, "Heat transfer modelling in CO laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

Hale, A.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Herrmann, J.

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Hill, K. O.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," J. Lightwave Technol. 6, 1476-1482 (1988).
[CrossRef]

Husakou, A.

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Johnson, D. C.

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," J. Lightwave Technol. 6, 1476-1482 (1988).
[CrossRef]

Kakarantzas, G.

Knight, J. C.

Koizumi, F.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
[CrossRef]

Konyukhov, A.

A. Konyukhov, L. Melnikov, and Y. Mazhirina, "Dispersive wave generation in microstructured fiber with periodically modulated diameter," Proc. SPIE 6165, 616508 (2006).
[CrossRef]

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Lamont, M. R. E.

Leon-Saval, S. G.

Leuschner, M.

J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Lou, J. Y.

L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

M¨agi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Magi, E. C.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazhirina, Y.

A. Konyukhov, L. Melnikov, and Y. Mazhirina, "Dispersive wave generation in microstructured fiber with periodically modulated diameter," Proc. SPIE 6165, 616508 (2006).
[CrossRef]

Mazur, E.

L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Meiser, D.

R. Zhang, X. Zhang, D. Meiser, and H. Giessen, "Mode and group velocity dispersion evolution in the tapered region of a single-mode tapered fiber," Opt. Express 12,5840-5849 (2004).
[CrossRef] [PubMed]

J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
[CrossRef]

Melnikov, L.

A. Konyukhov, L. Melnikov, and Y. Mazhirina, "Dispersive wave generation in microstructured fiber with periodically modulated diameter," Proc. SPIE 6165, 616508 (2006).
[CrossRef]

Mitschke, F.

M. Stratmann, M. Bohm, and F. Mitschke, "Stable propagation of dark solitons in dispersion maps of either sign of path-average dispersion," Electron. Lett. 37, 1182-1183 (2001).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys. Rev. Lett. 45,1095-1098 (1980).
[CrossRef]

Murugan, G. S.

Nau, D.

Nguyen, H. C.

E. C. Magi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007).
[CrossRef] [PubMed]

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Pannell, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, "Heat transfer modelling in CO laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

Richardson, D. J.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
[CrossRef]

Russell, P. St. J.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

St. J. Russell, P.

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys. Rev. Lett. 45,1095-1098 (1980).
[CrossRef]

Stratmann, M.

M. Stratmann, M. Bohm, and F. Mitschke, "Stable propagation of dark solitons in dispersion maps of either sign of path-average dispersion," Electron. Lett. 37, 1182-1183 (2001).
[CrossRef]

Sumetsky, M.

T¨urke, D.

J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
[CrossRef]

Teipel, J.

R. Zhang, J. Teipel, X. Zhang, D. Nau, and H. Giessen, "Group velocity dispersion of tapered fibers immersed in different liquids," Opt. Express 12, 1700-1707 (2004).
[CrossRef] [PubMed]

J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
[CrossRef]

Tong, L. M.

L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

Tong, L.M.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Wadsworth, W. J.

Warken, F.

F. Warken and H. Giessen, "Fast profile measurement of micrometer-sized tapered fibers with better than 50 nm accuracy," Opt. Lett. 29, 1727-1729 (2004).
[CrossRef] [PubMed]

J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
[CrossRef]

Wilkinson, J. S.

Witkowska, A.

Ye, Z. Z.

L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

Yeom, D. I.

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, "Heat transfer modelling in CO laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

Zervas, M. N.

Zhang, R.

Zhang, X.

Appl. Opt.

Appl. Phys. B

J. Teipel, K. Franke, D. T¨urke, F. Warken, D. Meiser, M. Leuschner, and H. Giessen, "Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses," Appl. Phys. B 77, 245-251 (2003).
[CrossRef]

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, "Tapered photonic crystal fibres: properties,characterisation and applications," Appl. Phys. B 81, 377-387 (2005).
[CrossRef]

Electron. Lett.

G. Brambilla, F. Koizumi, X. Feng, and D. J. Richardson, "Compound-glass optical nanowires," Electron. Lett. 41, 400-402 (2005).
[CrossRef]

M. Stratmann, M. Bohm, and F. Mitschke, "Stable propagation of dark solitons in dispersion maps of either sign of path-average dispersion," Electron. Lett. 37, 1182-1183 (2001).
[CrossRef]

J. Lightwave Technol.

T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

F. Bilodeau, K. O. Hill, S. Faucher, and D. C. Johnson, "Low-loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure," J. Lightwave Technol. 6, 1476-1482 (1988).
[CrossRef]

Nanotechnology

L. M. Tong, J. Y. Lou, Z. Z. Ye, T. S. Geoff, and E. Mazur, "Self-modulated taper drawing of silica nanowires," Nanotechnology 16, 1445-1448 (2005).
[CrossRef]

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelengthdiameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

New J. Phys.

G. Sague, A. Baade, and A. Rauschenbeutel, "Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres," New J. Phys. 10, 113008 (2008).
[CrossRef]

Opt. Commun.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, "Heat transfer modelling in CO laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

Opt. Eng.

C. E. Chryssou, "Theoretical analysis of tapering fused silica optical fibers using a carbon dioxide laser," Opt. Eng. 38, 1645-1649 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers," Phys. Rev. Lett. 45,1095-1098 (1980).
[CrossRef]

A. Husakou and J. Herrmann, "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers," Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Proc. SPIE

A. Konyukhov, L. Melnikov, and Y. Mazhirina, "Dispersive wave generation in microstructured fiber with periodically modulated diameter," Proc. SPIE 6165, 616508 (2006).
[CrossRef]

Other

Y. Louyer, D. Meschede, and A. Rauschenbeutel, "Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics," Phys. Rev. A 72, 031801(R) (2005).
[CrossRef]

Comsol Multiphysics, Modeling Guide, (Software manual, version 3.3).

F. Richter, "Upsetting and Viscoelasticity of Vitreous SiO2: Experiments, Interpretation and Simulation," PhD thesis, Technische Universit¨at Berlin (2006).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Coordinates used in the model. The bottom diagram shows the motion of the heating device, the three top diagrams selected fiber profiles during the drawing process. The dashed line with a slope of 1 indicates the position of the motor pulling the fiber.

Fig. 2.
Fig. 2.

a) Examples for the chosen distribution Θ(z). Different widths by variation of ν are shown, where ν·Θ0 corresponds to the half width at half maximum (HWHM) of the distribution. Here, Θ0 is set constant to 1.5 mm. b) Geometry and zones of boundary conditions for the FEM simulation of the temperature distribution within the fiber.

Fig. 3.
Fig. 3.

FEM-simulated decay of temperature along the fiber axis at r = 0 for different diameters of the fiber. The reddish area marks the heating zone. The thinner the fiber, the faster the decay and, hence, narrower the heating zone. The inset shows the dependence of the width of the temperature decay along the fiber on the fiber diameter. The red curve indicates a square root-fit.

Fig. 4.
Fig. 4.

Ratio of initial and final diameter of fibers drawn with a fixed heating device in the reference frame of the fiber. The elongation x 0 is 3 mm for all cases. Different colors and symbols stand for different widths of the heating device, realized by different distances between fiber and flame. The lines are guides to the eye.

Fig. 5.
Fig. 5.

Simulated fiber profiles (black), all starting with a homogeneous waist of 3.3 μm diameter. The red curves show the corresponding positions of the heating device p(x) on the z-axis in dependency of the fiber elongation x. a) Sinusoidally modulated waist. Set parameters: Amplitude 0.25 μm, mean diameter 2.75 μm, period 3.05 mm. b) Conically shaped waist: Minimal diameter 2.5 μm, maximal diameter of the waist 3.0 μm. c) Waist composed of three quadratic functions: Minimal diameter 1μm, maximal diameter 2.5 μm.

Fig. 6.
Fig. 6.

a) A measured profile of a fiber with a sinusoidally modulated waist. The red curve shows a fitted sine function with an amplitude of 0.22 μm, an offset of 2.77 μm and a period of 3.05 mm. A zoom-in is demonstrated by the inset. b) The diffraction pattern generated by a laser pointing perpendicularly onto the modulated fiber [29].

Tables (1)

Tables Icon

Table 1. Zones of transformation

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

π r 0 2 = V x = x 0 z 0 π r 2 ( z , x ) d z = 2 π 0 z 0 r ( z , x ) x r ( z , x ) dz .
0 z 0 Θ ( z ) d z = 1 .
r ( z + f ( z ) d x , x + d x ) = r ( z , x ) A r ( z , x ) Θ ( z ) d x .
f ( z ) = 0 z Θ ( z ) d z f ( z ) z = Θ ( z ) .
r x = f ( z ) r z + A r ( z , x ) Θ ( z ) .
r ( z , x + Δ x ) = r ( z , x ) ( f ( z ) r ( z + Δ z , x ) r ( z , x ) Δ z + 1 2 r ( z , x ) Θ ( z ) ) Δ x .
d r r ( x ) = 1 2 d x L ( x ) ,
r ( z Θ M ) / r 0 = exp ( 1 / 2 0 x 0 Θ M ( x ) d x ) .
r / r 0 = exp ( 1 / 2 x 0 Θ M ) .
Θ ( z ) = N e z 2 t 2 ( z 6 Θ 0 6 + 3 z 4 Θ 0 4 3 z 2 Θ 0 2 + 1 ) , t = ν Θ 0 ln 2 + 3 ln ( 1 ν 2 ) .
( k T ) = 0 ,
n · k T = σ ε ( T 0 4 T 4 ) ,
k ( T ) ( 4.5458 ( T 1000 K ) 2 4.2364 T 1000 K + 2.6277 ) W m × K
ε ( T ) 4.37 × 10 7 ( T 1 K ) 2 0.00147 T 1 K + 1.546 .
Θ 0 = B 0 + B 1 r ( z = p ( x ) , x ) .
d / d 0 = exp ( x 0 2 L 0 ) ,
z ̅ x 0 + Θ 0 + ln ( 1 2 ( 1 + exp ( x 0 2 Θ 0 ) ) ) ,
Θ 0 = B 0 + B 1 r min r 0 r d r r 0 r min = B 0 + 2 3 B 1 r 0 3 / 2 r min 3 / 2 r 0 r min

Metrics