Abstract

The optical properties of dielectric-metal-dielectric (DMD) transparent electrodes are investigated from the perspectives of organic light-emitting diodes (OLEDs). A joint experimental and theoretical study showed that the optical characteristics of OLEDs based on DMD electrodes can be widely tuned to fulfill the requirements of a target application through careful control of the microcavity effect, transmittance of DMD electrodes, and a correlation of these two factors with the emission spectra of the emitted materials. Upon variation of the DMD structure, near-Lambertian emission and a 100% improvement in the luminous efficiency are demonstrated, respectively. Optimization strategies are also discussed that are relevant to forward luminous efficiency, total optical power, and angular/ spectral characteristics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
    [CrossRef]
  2. B. W. D’Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. 16(18), 1585–1595 (2004).
    [CrossRef]
  3. G. F. Wang, X. M. Tao, and R. X. Wang, “Flexible organic light-emitting diodes with a polymeric nanocomposite anode,” Nanotech. 19(14), 145201 (2008).
    [CrossRef]
  4. H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
    [CrossRef]
  5. H. Cho, C. Yun, J.-W. Park, and S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org. Electron. 10(6), 1163–1169 (2009).
    [CrossRef]
  6. C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
    [CrossRef]
  7. J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett. 85(16), 3450 (2004).
    [CrossRef]
  8. X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/ Ag/ ZnS transparent conductive multilayer films,” Thin Solid Films 441(1-2), 200–206 (2003).
    [CrossRef]
  9. J. C. C. Fan and F. J. Bachner, “Transparent heat mirrors for solar-energy applications,” Appl. Opt. 15(4), 1012–1017 (1976).
    [CrossRef] [PubMed]
  10. S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
    [CrossRef]
  11. H. A. Macleod, Thin-film optical Filters (Taylor & Francis, 2001).
  12. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
    [CrossRef]
  13. M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
    [CrossRef]
  14. S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
    [CrossRef]
  15. J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
    [CrossRef]
  16. C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
    [CrossRef]
  17. H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290 (2003).
    [CrossRef]
  18. J. Lim, S. S. Oh, D. Y. Kim, S. H. Cho, I. T. Kim, S. H. Han, H. Takezoe, E. H. Choi, G. S. Cho, Y. H. Seo, S. O. Kang, and B. Park, “Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array,” Opt. Express 14(14), 6564–6571 (2006).
    [CrossRef] [PubMed]
  19. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519 (2004).
    [CrossRef]

2009

H. Cho, C. Yun, J.-W. Park, and S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org. Electron. 10(6), 1163–1169 (2009).
[CrossRef]

C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
[CrossRef]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
[CrossRef]

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

2008

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

G. F. Wang, X. M. Tao, and R. X. Wang, “Flexible organic light-emitting diodes with a polymeric nanocomposite anode,” Nanotech. 19(14), 145201 (2008).
[CrossRef]

2007

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
[CrossRef]

2006

2004

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519 (2004).
[CrossRef]

B. W. D’Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. 16(18), 1585–1595 (2004).
[CrossRef]

J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett. 85(16), 3450 (2004).
[CrossRef]

2003

X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/ Ag/ ZnS transparent conductive multilayer films,” Thin Solid Films 441(1-2), 200–206 (2003).
[CrossRef]

H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290 (2003).
[CrossRef]

1997

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

1994

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

1976

Bachner, F. J.

Baik, H. K.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Beierlein, T.

H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290 (2003).
[CrossRef]

Bulovic, V.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Bulow, T.

J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
[CrossRef]

Burrows, P. E.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Cai, X.

X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/ Ag/ ZnS transparent conductive multilayer films,” Thin Solid Films 441(1-2), 200–206 (2003).
[CrossRef]

Cao, L.

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

Chalamala, B.

J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett. 85(16), 3450 (2004).
[CrossRef]

Chen, W.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Cho, G. S.

Cho, H.

H. Cho, C. Yun, J.-W. Park, and S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org. Electron. 10(6), 1163–1169 (2009).
[CrossRef]

C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
[CrossRef]

Cho, S. H.

Choi, E. H.

Choi, S. H.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

D’Andrade, B. W.

B. W. D’Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. 16(18), 1585–1595 (2004).
[CrossRef]

Deppe, D. G.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Dong, W.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Fan, J. C. C.

Forrest, S. R.

B. W. D’Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. 16(18), 1585–1595 (2004).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519 (2004).
[CrossRef]

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Furno, M.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

Grego, S.

J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett. 85(16), 3450 (2004).
[CrossRef]

Gu, G.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Gupta, D.

S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
[CrossRef]

Hamwi, S.

J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
[CrossRef]

Han, S.

S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
[CrossRef]

Han, S. H.

Huffaker, D. L.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Hwang, B. H.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Hwang, H. S.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Jeong, H. S.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Jiang, N.

X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/ Ag/ ZnS transparent conductive multilayer films,” Thin Solid Films 441(1-2), 200–206 (2003).
[CrossRef]

Jo, S. J.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Johannes, H.-H.

J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
[CrossRef]

Kang, H.

C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
[CrossRef]

Kang, S. O.

Karg, S.

H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290 (2003).
[CrossRef]

Kim, C. S.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Kim, D. Y.

Kim, I. T.

Kim, J. T.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Kong, X.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Kowalsky, W.

J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
[CrossRef]

Lee, C. H.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Lee, Y.

C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
[CrossRef]

Lei, C.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Leo, K.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

Lewis, J.

J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett. 85(16), 3450 (2004).
[CrossRef]

Lian, J.

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

Lim, J.

Lin, C. C.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Liu, C.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Liu, X.

X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/ Ag/ ZnS transparent conductive multilayer films,” Thin Solid Films 441(1-2), 200–206 (2003).
[CrossRef]

Mao, J.

X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/ Ag/ ZnS transparent conductive multilayer films,” Thin Solid Films 441(1-2), 200–206 (2003).
[CrossRef]

Meng, F.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Meyer, J.

J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
[CrossRef]

Moon, S.

S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
[CrossRef]

Neyts, K.

H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290 (2003).
[CrossRef]

Nitsche, R.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

Noh, J. H.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Oh, S. S.

Pang, H.

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

Park, B.

Park, J.-W.

H. Cho, C. Yun, J.-W. Park, and S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org. Electron. 10(6), 1163–1169 (2009).
[CrossRef]

Park, S. Y.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Park, Y.

C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519 (2004).
[CrossRef]

Qiao, J.

X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/ Ag/ ZnS transparent conductive multilayer films,” Thin Solid Films 441(1-2), 200–206 (2003).
[CrossRef]

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519 (2004).
[CrossRef]

Riedl, T.

J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
[CrossRef]

Riel, H.

H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290 (2003).
[CrossRef]

Rieß, W.

H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290 (2003).
[CrossRef]

Ruan, S.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Ryu, S. Y.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Seo, M.

S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
[CrossRef]

Seo, Y. H.

Shen, L.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Shen, Z.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Shin, W.

S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
[CrossRef]

Song, S. Y.

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

Takezoe, H.

Tao, C.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Tao, X. M.

G. F. Wang, X. M. Tao, and R. X. Wang, “Flexible organic light-emitting diodes with a polymeric nanocomposite anode,” Nanotech. 19(14), 145201 (2008).
[CrossRef]

Temple, D.

J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett. 85(16), 3450 (2004).
[CrossRef]

Thompson, M. E.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

Thomschke, M.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

Vick, E.

J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett. 85(16), 3450 (2004).
[CrossRef]

Wang, G. F.

G. F. Wang, X. M. Tao, and R. X. Wang, “Flexible organic light-emitting diodes with a polymeric nanocomposite anode,” Nanotech. 19(14), 145201 (2008).
[CrossRef]

Wang, R. X.

G. F. Wang, X. M. Tao, and R. X. Wang, “Flexible organic light-emitting diodes with a polymeric nanocomposite anode,” Nanotech. 19(14), 145201 (2008).
[CrossRef]

Xie, G.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Yoo, S.

H. Cho, C. Yun, J.-W. Park, and S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org. Electron. 10(6), 1163–1169 (2009).
[CrossRef]

S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
[CrossRef]

C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
[CrossRef]

Yuan, Y.

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

Yun, C.

C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
[CrossRef]

H. Cho, C. Yun, J.-W. Park, and S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org. Electron. 10(6), 1163–1169 (2009).
[CrossRef]

Zhang, J.

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

Zhang, X.

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

Zhou, X.

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

Zhou, Y.

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

Adv. Mater.

B. W. D’Andrade and S. R. Forrest, “White Organic Light-Emitting Devices for Solid-State Lighting,” Adv. Mater. 16(18), 1585–1595 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Yun, H. Cho, H. Kang, Y. Lee, Y. Park, and S. Yoo, “Electron injection via pentacene thin films for efficient inverted organic light-emitting diodes,” Appl. Phys. Lett. 95(5), 053301 (2009).
[CrossRef]

J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. Temple, “Highly flexible transparent electrodes for organic light-emitting diode-based displays,” Appl. Phys. Lett. 85(16), 3450 (2004).
[CrossRef]

S. Y. Ryu, J. H. Noh, B. H. Hwang, C. S. Kim, S. J. Jo, J. T. Kim, H. S. Hwang, H. K. Baik, H. S. Jeong, C. H. Lee, S. Y. Song, S. H. Choi, and S. Y. Park, “Transparent organic light-emitting diodes consisting of a metal oxide multilayer cathode,” Appl. Phys. Lett. 92(2), 023306 (2008).
[CrossRef]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94(8), 083303 (2009).
[CrossRef]

J. Meyer, S. Hamwi, T. Bulow, H.-H. Johannes, T. Riedl, and W. Kowalsky, “Highly efficient simplified organic light emitting diodes,” Appl. Phys. Lett. 91(11), 113506 (2007).
[CrossRef]

C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, “Role of tungsten oxide in inverted polymer solar cells,” Appl. Phys. Lett. 94(4), 043311 (2009).
[CrossRef]

IEEE Trans. Electron. Dev.

P. E. Burrows, G. Gu, V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, “Achieving Full-Color Organic Light-Emitting Devices for Lightweight, Flat-Panel Displays,” IEEE Trans. Electron. Dev. 44(8), 1188–1203 (1997).
[CrossRef]

J. Appl. Phys.

H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study,” J. Appl. Phys. 94(8), 5290 (2003).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519 (2004).
[CrossRef]

J. Lumin.

H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/ Ag/ ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122–123, 587–589 (2007).
[CrossRef]

J. Mod. Opt.

D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41(2), 325–344 (1994).
[CrossRef]

Nanotech.

G. F. Wang, X. M. Tao, and R. X. Wang, “Flexible organic light-emitting diodes with a polymeric nanocomposite anode,” Nanotech. 19(14), 145201 (2008).
[CrossRef]

Opt. Express

Org. Electron.

H. Cho, C. Yun, J.-W. Park, and S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org. Electron. 10(6), 1163–1169 (2009).
[CrossRef]

S. Han, W. Shin, M. Seo, D. Gupta, S. Moon, and S. Yoo, “Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes,” Org. Electron. 10(5), 791–797 (2009).
[CrossRef]

Thin Solid Films

X. Liu, X. Cai, J. Qiao, J. Mao, and N. Jiang, “The design of ZnS/ Ag/ ZnS transparent conductive multilayer films,” Thin Solid Films 441(1-2), 200–206 (2003).
[CrossRef]

Other

H. A. Macleod, Thin-film optical Filters (Taylor & Francis, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic device structure of the OLED under study and (b) its simplified microcavity structure used for an optical analysis based on thin-film optics (right). z 0 is the distance of the emission zone measured from the aluminum / Alq3 interface. (c) The optical constants (n,k) of each material used for optical analysis. For those of Ag, please refer to Ref. 8 (the values given for 12-nm-thick Ag film therein)

Fig. 2
Fig. 2

Transmittance of a DMD structure upon variation of the thickness of the inner (WO3) and outer (ZnS) dielectric layers for a 15-nm-thick Ag layer: (a) air-to-glass vs. (b) organic-to-glass transmittance

Fig. 3
Fig. 3

(a) Current density-voltage (J-V) and (b) luminance-current density (L-J) characteristics of OLED devices in a structure of glass/ X/ NPB (50nm)/ Alq3 (50nm)/ LiF (1nm)/Al, with X being ITO or ZnS (30nm) / Ag (15nm) / WO3 (x nm) for x values of 5, 20, and 30 nm. L was measured at a direction normal to the substrate.

Fig. 4
Fig. 4

(a) Reflectance and transmittance, (b) f TI(λ), I 0(λ), and f FP(λ), and (c) Δϕ of DMD-based OLEDs for WO3 thicknesses(x) of 5, 20, and 30 nm. (d) Comparison of the measured emission spectra I(λ) and the simulation result using G cav(λ) × I 0(λ) for DMD-based OLEDs. During the fitting procedure, the thickness of each layer was allowed to vary only within 10% from the nominal thickness.

Fig. 5
Fig. 5

(a) Current density-voltage (J-V) and (b) luminance-current density (L-J) characteristics of OLED devices in a structure of glass/ Y/ NPB (50nm)/ Alq3 (50nm)/ LiF (1 nm)/Al, with Y being ITO or ZnS (y nm) / Ag (15nm) / WO3 (5 nm) for y values of 30, 45, and 60 nm.

Fig. 6
Fig. 6

(a) Reflectance and transmittance, (b) f TI(λ), I 0(λ), and f FP(λ), and (c) Δϕ of DMD-based OLEDs for ZnS thicknesses(y) of 30, 45, and 60 nm. (d) Comparison of the measured emission spectra I(λ) and the simulated emission spectra G cav(λ) × I 0(λ) of DMD-based OLEDs. The fitting procedures for (d) are identical to those used in Fig. 4(d).

Fig. 7
Fig. 7

Angular emission characteristics of OLED devices in a structure of glass/ ZAW/ NPB (50nm)/ Alq3 (50nm)/ LiF (1nm)/Al, with ZAW being (a) ZnS (30nm) / Ag (15nm) / WO3 (x nm) for x values of 5, 20, and 30 nm and (b) ZnS (y nm)/ Ag (15nm)/ WO3 (5 nm) for y values of 30, 45, and 60 nm

Fig. 8
Fig. 8

Measured (solid) and simulated (dashed) transmittance (T) spectra of (a) glass/ Ag (15nm) and (b) glass/SU-8/ ZnS (30nm)/Ag (15nm) samples. Inset: the photographs of the respective samples. The Ag film grown on a bare glass shown in (a) has an island-like morphology.

Tables (2)

Tables Icon

Table 1 Device Characteristics of ZAW-based OLEDs vs. the Thickness of the WO3 Layer

Tables Icon

Table 2 Device Characteristics of ZAW-based OLEDs vs. the Thickness of the ZnS Layer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G cav ( λ ) = f FP ( λ )   × f TI ( λ ; z 0 )
f F P = T D M D ( 1 R A l R D M D ) 2 + 4 R A l R D M D sin 2 ( Δ ϕ 2 )
f T I = 1 + R Al + 2 R Al cos ( ϕ A l + 4 π n org z o cos ( θ org , EML ) λ )
Δ ϕ = ϕ Al ϕ DMD + i = NPB,Alq3 4 π n i d i cos ( θ i ) λ

Metrics