Abstract

We present a swept-source polarization-sensitive optical coherence tomography system based on a polarization-maintaining fiber interferometer. The system produces reflectivity and birefringence information along a depth profile with a single sweep of the optical spectrum. Unlike single-mode fiber systems, retardance and relative optical axis orientation images are calculated without compensation. The source is a 45 mW polygon-based swept-source centered at 1290 nm and tuned at a rate of 28 kHz. The interferometer consists of a single polarization-maintaining coupler that utilizes balanced detection for improved performance. Characterization data shows that this system yields accurate measurements with high sensitivity (106.2 dB) comparable to conventional setups. Images of biological tissues with high dynamic range are demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-12-934 .
    [CrossRef] [PubMed]
  3. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23(3), 228–230 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ol-23-3-228 .
    [CrossRef]
  4. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-8-537 .
    [CrossRef]
  5. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-780 .
    [CrossRef] [PubMed]
  6. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1355 .
    [CrossRef]
  7. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26(14), 1069–1071 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-14-1069 .
    [CrossRef]
  8. D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28(19), 1775–1777 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-19-1775 .
    [CrossRef] [PubMed]
  9. C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29(13), 1509–1511 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-13-1509 .
    [CrossRef] [PubMed]
  10. T. Akkin, D. Davé, T. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12(11), 2377–2386 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2377 .
    [CrossRef] [PubMed]
  11. M. K. Al-Qaisi, H. Wang, and T. Akkin, “Measurement of Faraday rotation using phase-sensitive low-coherence interferometry,” Appl. Opt. 48(30), 5829–5833 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-30-5829 .
    [CrossRef] [PubMed]
  12. M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express 16(17), 13032–13041 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13032 .
    [CrossRef] [PubMed]
  13. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-17-2-151 .
    [CrossRef] [PubMed]
  14. A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3(6), 219–229 (1998), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-3-6-219 .
    [CrossRef] [PubMed]
  15. A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  16. G. Häusler and M. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [CrossRef]
  17. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  18. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-5-340 .
    [CrossRef] [PubMed]
  19. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22(22), 1704–1706 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-22-1704 .
    [CrossRef]
  20. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36(25), 6548–6553 (1997), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-25-6548 .
    [CrossRef]
  21. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
    [CrossRef] [PubMed]
  22. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 .
    [CrossRef] [PubMed]
  23. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-21-2067 .
    [CrossRef] [PubMed]
  24. B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12(4), 044007 (2007).
    [CrossRef] [PubMed]
  25. J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12(24), 6033–6039 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-24-6033 .
    [CrossRef] [PubMed]
  26. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10217 .
    [CrossRef] [PubMed]
  27. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502 .
    [CrossRef] [PubMed]
  28. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1054 .
    [CrossRef] [PubMed]
  29. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2421 .
    [CrossRef] [PubMed]
  30. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1096 .
    [CrossRef] [PubMed]
  31. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5892 .
    [CrossRef] [PubMed]
  32. H. Wang, M. K. Al-Qaisi, and T. Akkin, “Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain,” Opt. Lett. 35(2), 154–156 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-2-154 .
    [CrossRef] [PubMed]
  33. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-22704 .
    [CrossRef]
  34. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12(23), 5614–5624 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5614 .
    [CrossRef] [PubMed]
  35. A. Yurek, H. Taylor, L. Goldberg, J. Weller, and A. Dandridge, “Quantum noise in superluminescent diodes,” J. Quantum Electron. 22(4), 522–527 (1986).
    [CrossRef]
  36. M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical Fiber Component Characterization by High-Intensity and High-Spatial-Resolution Interferometric Optical-Time-Domain Reflectometer,” IEEE Photon. Technol. Lett. 3(6), 564–566 (1991).
    [CrossRef]
  37. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2953 .
    [CrossRef] [PubMed]
  38. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-21-1484 .
    [CrossRef]
  39. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-20-1981 .
    [CrossRef] [PubMed]
  40. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903 (1992) http://www.opticsinfobase.org/abstract.cfm?URI=josab-9-6-903 .
    [CrossRef]
  41. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=josab-17-10-1795 .
    [CrossRef]
  42. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4403 .
    [CrossRef] [PubMed]
  43. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 .
    [CrossRef] [PubMed]
  44. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937 .
    [CrossRef] [PubMed]
  45. W. Sorin and D. Baney, “A simple intensity noise reduction technique for optical low coherence reflectometry,” IEEE Photon. Technol. Lett. 4(12), 1404–1406 (1992).
    [CrossRef]

2010 (1)

2009 (2)

2008 (3)

2007 (3)

2006 (3)

2005 (1)

2004 (5)

2003 (6)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
[CrossRef] [PubMed]

D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28(19), 1775–1777 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-19-1775 .
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-20-1981 .
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-21-2067 .
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2953 .
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

2002 (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (2)

1999 (2)

1998 (3)

1997 (4)

1995 (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

1992 (2)

1991 (2)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical Fiber Component Characterization by High-Intensity and High-Spatial-Resolution Interferometric Optical-Time-Domain Reflectometer,” IEEE Photon. Technol. Lett. 3(6), 564–566 (1991).
[CrossRef]

1986 (1)

A. Yurek, H. Taylor, L. Goldberg, J. Weller, and A. Dandridge, “Quantum noise in superluminescent diodes,” J. Quantum Electron. 22(4), 522–527 (1986).
[CrossRef]

Akkin, T.

H. Wang, M. K. Al-Qaisi, and T. Akkin, “Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain,” Opt. Lett. 35(2), 154–156 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-2-154 .
[CrossRef] [PubMed]

M. K. Al-Qaisi, H. Wang, and T. Akkin, “Measurement of Faraday rotation using phase-sensitive low-coherence interferometry,” Appl. Opt. 48(30), 5829–5833 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=ao-48-30-5829 .
[CrossRef] [PubMed]

M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express 16(17), 13032–13041 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13032 .
[CrossRef] [PubMed]

T. Akkin, D. Davé, T. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12(11), 2377–2386 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2377 .
[CrossRef] [PubMed]

C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29(13), 1509–1511 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-13-1509 .
[CrossRef] [PubMed]

D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28(19), 1775–1777 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-19-1775 .
[CrossRef] [PubMed]

Al-Qaisi, M. K.

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Baney, D.

W. Sorin and D. Baney, “A simple intensity noise reduction technique for optical low coherence reflectometry,” IEEE Photon. Technol. Lett. 4(12), 1404–1406 (1992).
[CrossRef]

Baumann, B.

Belabas, N.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Brezinski, M. E.

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12(4), 044007 (2007).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chen, T. C.

Chen, Z.

Chinn, S. R.

Choma, M.

Colston, B. W.

Da Silva, L. B.

Dandridge, A.

A. Yurek, H. Taylor, L. Goldberg, J. Weller, and A. Dandridge, “Quantum noise in superluminescent diodes,” J. Quantum Electron. 22(4), 522–527 (1986).
[CrossRef]

Davé, D.

Davé, D. P.

de Boer, J.

de Boer, J. F.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1096 .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2421 .
[CrossRef] [PubMed]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937 .
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4403 .
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-21-2067 .
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1355 .
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-12-934 .
[CrossRef] [PubMed]

Desjardins, A. E.

Diller, K. R.

Dorrer, C.

El-Zaiat, S.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

et,

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Everett, M. J.

Fercher, A.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36(25), 6548–6553 (1997), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-25-6548 .
[CrossRef]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Goetzinger, E.

Goldberg, L.

A. Yurek, H. Taylor, L. Goldberg, J. Weller, and A. Dandridge, “Quantum noise in superluminescent diodes,” J. Quantum Electron. 22(4), 522–527 (1986).
[CrossRef]

Golubovic, B.

Götzinger, E.

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler and M. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

Hitzenberger, C.

Hitzenberger, C. K.

Huang, D.

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Iftimia, N.

Izatt, J.

Izatt, J. A.

Joffre, M.

Jung, W.

Kamp, G.

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Kobayashi, M.

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical Fiber Component Characterization by High-Intensity and High-Spatial-Resolution Interferometric Optical-Time-Domain Reflectometer,” IEEE Photon. Technol. Lett. 3(6), 564–566 (1991).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Kozak, J. A.

Kulhavy, M.

Kulkarni, M.

Lee, E. C.

Leitgeb, R.

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Lexer, F.

Likforman, J. P.

Lim, H.

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, C. P.

Lindner, M.

G. Häusler and M. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Liu, B.

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12(4), 044007 (2007).
[CrossRef] [PubMed]

Madjarova, V. D.

Makita, S.

Milner, T.

Milner, T. E.

Mujat, M.

Nassif, N.

Nelson, J.

Nelson, J. S.

Noda, J.

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical Fiber Component Characterization by High-Intensity and High-Spatial-Resolution Interferometric Optical-Time-Domain Reflectometer,” IEEE Photon. Technol. Lett. 3(6), 564–566 (1991).
[CrossRef]

Oh, W. Y.

Park, B.

Park, B. H.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1096 .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2421 .
[CrossRef] [PubMed]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937 .
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-21-2067 .
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1355 .
[CrossRef]

Pierce, M.

Pierce, M. C.

Pircher, M.

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Puliafito, C. A.

Rollins, A.

Rollins, A. M.

Roth, J. E.

Rylander, C. G.

Rylander Iii, H.

Sarunic, M.

Saxer, C. E.

Schoenenberger, K.

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shishkov, M.

Sorin, W.

W. Sorin and D. Baney, “A simple intensity noise reduction technique for optical low coherence reflectometry,” IEEE Photon. Technol. Lett. 4(12), 1404–1406 (1992).
[CrossRef]

Sticker, M.

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

Takada, K.

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical Fiber Component Characterization by High-Intensity and High-Spatial-Resolution Interferometric Optical-Time-Domain Reflectometer,” IEEE Photon. Technol. Lett. 3(6), 564–566 (1991).
[CrossRef]

Taylor, H.

A. Yurek, H. Taylor, L. Goldberg, J. Weller, and A. Dandridge, “Quantum noise in superluminescent diodes,” J. Quantum Electron. 22(4), 522–527 (1986).
[CrossRef]

Taylor, H. F.

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical Fiber Component Characterization by High-Intensity and High-Spatial-Resolution Interferometric Optical-Time-Domain Reflectometer,” IEEE Photon. Technol. Lett. 3(6), 564–566 (1991).
[CrossRef]

Tearney, G.

Tearney, G. J.

Ung-Arunyawee, R.

Vakoc, B. J.

van Gemert, M. J.

Wang, H.

Wang, L. V.

Welch, A. J.

Weller, J.

A. Yurek, H. Taylor, L. Goldberg, J. Weller, and A. Dandridge, “Quantum noise in superluminescent diodes,” J. Quantum Electron. 22(4), 522–527 (1986).
[CrossRef]

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Yamanari, M.

Yang, C.

Yao, G.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yelin, R.

Yun, S.

Yun, S. H.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1096 .
[CrossRef] [PubMed]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937 .
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4403 .
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 .
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12(23), 5614–5624 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5614 .
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-20-1981 .
[CrossRef] [PubMed]

Yurek, A.

A. Yurek, H. Taylor, L. Goldberg, J. Weller, and A. Dandridge, “Quantum noise in superluminescent diodes,” J. Quantum Electron. 22(4), 522–527 (1986).
[CrossRef]

Zhang, J.

Zhao, Y.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (2)

M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical Fiber Component Characterization by High-Intensity and High-Spatial-Resolution Interferometric Optical-Time-Domain Reflectometer,” IEEE Photon. Technol. Lett. 3(6), 564–566 (1991).
[CrossRef]

W. Sorin and D. Baney, “A simple intensity noise reduction technique for optical low coherence reflectometry,” IEEE Photon. Technol. Lett. 4(12), 1404–1406 (1992).
[CrossRef]

J. Biomed. Opt. (3)

G. Häusler and M. Lindner, ““Coherence Radar” and “Spectral Radar”—New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12(4), 044007 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Quantum Electron. (1)

A. Yurek, H. Taylor, L. Goldberg, J. Weller, and A. Dandridge, “Quantum noise in superluminescent diodes,” J. Quantum Electron. 22(4), 522–527 (1986).
[CrossRef]

Opt. Commun. (1)

A. Fercher, C. Hitzenberger, G. Kamp, and S. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (19)

A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, and J. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3(6), 219–229 (1998), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-3-6-219 .
[CrossRef] [PubMed]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-780 .
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts,” Opt. Express 12(23), 5614–5624 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-23-5614 .
[CrossRef] [PubMed]

J. Zhang, W. Jung, J. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12(24), 6033–6039 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-24-6033 .
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-25-10217 .
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express 14(10), 4403–4411 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4403 .
[CrossRef] [PubMed]

H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5937 .
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express 14(14), 6502–6515 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502 .
[CrossRef] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-3-1054 .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-5-2421 .
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express 16(2), 1096–1103 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-2-1096 .
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16(8), 5892–5906 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5892 .
[CrossRef] [PubMed]

M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express 16(17), 13032–13041 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-17-13032 .
[CrossRef] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-25-22704 .
[CrossRef]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-22-2953 .
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

T. Akkin, D. Davé, T. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12(11), 2377–2386 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2377 .
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2435 .
[CrossRef] [PubMed]

Opt. Lett. (14)

C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29(13), 1509–1511 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-13-1509 .
[CrossRef] [PubMed]

H. Wang, M. K. Al-Qaisi, and T. Akkin, “Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain,” Opt. Lett. 35(2), 154–156 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-2-154 .
[CrossRef] [PubMed]

D. P. Davé, T. Akkin, and T. E. Milner, “Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence,” Opt. Lett. 28(19), 1775–1777 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-19-1775 .
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-20-1981 .
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-21-2067 .
[CrossRef] [PubMed]

J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett. 26(14), 1069–1071 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ol-26-14-1069 .
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000), http://www.opticsinfobase.org/abstract.cfm?URI=ol-25-18-1355 .
[CrossRef]

E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17(2), 151–153 (1992), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-17-2-151 .
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-5-340 .
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-12-934 .
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22(22), 1704–1706 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-22-1704 .
[CrossRef]

M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23(3), 228–230 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ol-23-3-228 .
[CrossRef]

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24(8), 537–539 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-8-537 .
[CrossRef]

A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24(21), 1484–1486 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-21-1484 .
[CrossRef]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903 (1992) http://www.opticsinfobase.org/abstract.cfm?URI=josab-9-6-903 .
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SSPS-OCT system. BD: balanced detectors, BOA: booster optical amplifier, Circ: circulator, G: grating, L: lens, T: achromatic telescope, M: mirror. P: polarizer, ND: neutral density filter, QWP: quarter-wave plate, WP: Wollaston prism. Dashed boxes show various stages as labeled. Bold lines represent the PMF. Zero degree splices are indicated in the reference and sample arms.

Fig. 2
Fig. 2

(a) Output of the swept source, (b) optical spectrum calculated from the monochromator characteristics

Fig. 3
Fig. 3

Coherence functions of (a) PMF-based SSPS-OCT and (b) a non-PM fiber-based SS-OCT. Black trace shows the coherence function after dispersion compensation. The red and blue traces are obtained after apodization, and reference subtraction in addition to apodization, respectively.

Fig. 4
Fig. 4

Depth-dependent decay in (a) PMF-based SSPS-OCT, and (b) non-PM fiber-based SS-OCT. Differences between the plots are barely distinguishable.

Fig. 5
Fig. 5

Retardance measurement of a voltage-controlled variable retarder

Fig. 6
Fig. 6

Measurements of retardance and axis orientation as a function of (a) rotation, and (b) depth

Fig. 7
Fig. 7

Reflectivity (a,c) and phase retardance (b,d) images of a chicken leg muscle (a,b) and tendon tissue (c,d).

Fig. 8
Fig. 8

Reflectivity (a), phase retardance (b), and relative optical axis orientation (c) images of two angled slabs of chicken breast muscle

Metrics