Abstract

We propose and demonstrate, by proof of concept, a novel method of ultra-wide band (UWB) photonic generation using photodetection and cross-absorption modulation (XAM) of multiple quantum wells (MQW) in a single short-terminated electroabsorption modulator (SEAM). As an optical pump pulse excite the MQWs of SEAM waveguide, the probe light pulse with the same polarity can be generated through XAM, simultaneously creating photocurrent pulse propagating along the waveguide. Using the short termination of SEAM accompanied by the delayed microwave line, the photocurrent pulse can be reversed in polarity and re-modulated the waveguide, forming a monocycle UWB optical pulse. An 89ps cycle of monocycle pulse with 114% fractional bandwidth is obtained, where the electrical power spectrum centered at 4GHz of frequency ranges from 0.1GHz to 8GHz for −10dB drops. Meanwhile, the generation processing is also confirmed by observing the same cycle of monocycle electrical pulse from the photodetection of SEAM. The whole optical processing is performed inside a compact semiconductor device, suggesting the optoelectronic integration template has a potential for the application of UWB photonic generation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Federal Communications Commission, Rep., ET-Docket 98–153, FCC02–48, 2002.
  2. M. Ghavami, L. B. Michael, and R. Kohno, “Ultra wideband Overview,” in Ultra Wideband Signals and Systems in Communication Engineering, E.D. Wiley, ed. (West Sussex, U.K., 2004).
  3. C. R. Nassar, F. Zhu, and Z. Wu, “Direct sequence spreading UWB systems: Frequency domain processing for enhanced performance and throughput,” Proc. IEEE International Conf. Commun. 3, 2180–2186 (2003).
  4. X. Chen, and S. Kiaei, Monolithic distributed power supply for a mixed-signal integrated circuit,” in Proceedings of IEEE International Symposium on Circuit and Systems, pp.I-597-I-600 (2003).
  5. W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
    [CrossRef]
  6. T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett. 15(3), 153–155 (2005).
    [CrossRef]
  7. Q. Wang, F. Zeng, S. Blais, and J. P. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
    [CrossRef] [PubMed]
  8. F. Zeng and J. P. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
    [CrossRef]
  9. S. Fu, W. D. Zhong, Y. J. Wen, and P. Shum, “Photonic, “Monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
    [CrossRef]
  10. Y.-J Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region,” IEEE Photon. Technol. Lett. 17(10), 2065–2067 (2005).
    [CrossRef]
  11. V. V. Nikolaev and E. A. Avrutin, “Photocarrier Escape Time in Quantum-Well Light-Absorbing Devices: Effects of Electric Field and Well Parameters,” IEEE J. Quantum Electron. 39(12), 1653–1660 (2003).
    [CrossRef]
  12. N. Cheng and J. C. Cartledge, “Measurement-Based Model for Cross-Absorption Modulation in an MQW Electroabsorption Modulator,” J. Lightwave Technol. 22(7), 1805–1810 (2004).
    [CrossRef]
  13. F. J. Tsu-Hsiu Wu, Lin, and Yi-Jen Chiu, “High-Extinction Ratio Wavelength Conversion by Electro-Absorption Modulator,” presented at the 2006 Conference on Optoelectronic and Microelectronic Materials and Device, Perth, Western Australia, 6–8 Dec. 2006.
  14. P. A. Rizzi, Microwave Engineering Passive Circuits, (Prentice Hall).

2008 (1)

S. Fu, W. D. Zhong, Y. J. Wen, and P. Shum, “Photonic, “Monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

2006 (2)

Q. Wang, F. Zeng, S. Blais, and J. P. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

2005 (3)

W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
[CrossRef]

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

Y.-J Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region,” IEEE Photon. Technol. Lett. 17(10), 2065–2067 (2005).
[CrossRef]

2004 (1)

2003 (2)

V. V. Nikolaev and E. A. Avrutin, “Photocarrier Escape Time in Quantum-Well Light-Absorbing Devices: Effects of Electric Field and Well Parameters,” IEEE J. Quantum Electron. 39(12), 1653–1660 (2003).
[CrossRef]

C. R. Nassar, F. Zhu, and Z. Wu, “Direct sequence spreading UWB systems: Frequency domain processing for enhanced performance and throughput,” Proc. IEEE International Conf. Commun. 3, 2180–2186 (2003).

Avrutin, E. A.

V. V. Nikolaev and E. A. Avrutin, “Photocarrier Escape Time in Quantum-Well Light-Absorbing Devices: Effects of Electric Field and Well Parameters,” IEEE J. Quantum Electron. 39(12), 1653–1660 (2003).
[CrossRef]

Blais, S.

Bowers, J. E.

Y.-J Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region,” IEEE Photon. Technol. Lett. 17(10), 2065–2067 (2005).
[CrossRef]

Cartledge, J. C.

Chen, J. Y.

W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
[CrossRef]

Cheng, N.

Cheng, W.-C.

Y.-J Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region,” IEEE Photon. Technol. Lett. 17(10), 2065–2067 (2005).
[CrossRef]

Chiu, Y.-J

Y.-J Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region,” IEEE Photon. Technol. Lett. 17(10), 2065–2067 (2005).
[CrossRef]

Fu, S.

S. Fu, W. D. Zhong, Y. J. Wen, and P. Shum, “Photonic, “Monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

Lin, F. J.

Y.-J Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region,” IEEE Photon. Technol. Lett. 17(10), 2065–2067 (2005).
[CrossRef]

Lin, W. P.

W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
[CrossRef]

Nassar, C. R.

C. R. Nassar, F. Zhu, and Z. Wu, “Direct sequence spreading UWB systems: Frequency domain processing for enhanced performance and throughput,” Proc. IEEE International Conf. Commun. 3, 2180–2186 (2003).

Nikolaev, V. V.

V. V. Nikolaev and E. A. Avrutin, “Photocarrier Escape Time in Quantum-Well Light-Absorbing Devices: Effects of Electric Field and Well Parameters,” IEEE J. Quantum Electron. 39(12), 1653–1660 (2003).
[CrossRef]

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

Shum, P.

S. Fu, W. D. Zhong, Y. J. Wen, and P. Shum, “Photonic, “Monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Wang, Q.

Wen, Y. J.

S. Fu, W. D. Zhong, Y. J. Wen, and P. Shum, “Photonic, “Monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Wu, T.-H.

Y.-J Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region,” IEEE Photon. Technol. Lett. 17(10), 2065–2067 (2005).
[CrossRef]

Wu, Z.

C. R. Nassar, F. Zhu, and Z. Wu, “Direct sequence spreading UWB systems: Frequency domain processing for enhanced performance and throughput,” Proc. IEEE International Conf. Commun. 3, 2180–2186 (2003).

Yao, J. P.

Q. Wang, F. Zeng, S. Blais, and J. P. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. P. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

Zeng, F.

F. Zeng and J. P. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. P. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

Zhong, W. D.

S. Fu, W. D. Zhong, Y. J. Wen, and P. Shum, “Photonic, “Monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Zhu, F.

C. R. Nassar, F. Zhu, and Z. Wu, “Direct sequence spreading UWB systems: Frequency domain processing for enhanced performance and throughput,” Proc. IEEE International Conf. Commun. 3, 2180–2186 (2003).

IEEE J. Quantum Electron. (1)

V. V. Nikolaev and E. A. Avrutin, “Photocarrier Escape Time in Quantum-Well Light-Absorbing Devices: Effects of Electric Field and Well Parameters,” IEEE J. Quantum Electron. 39(12), 1653–1660 (2003).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Ultra-wide-band radio signal generation using optical frequency-shift-keying technique,” IEEE Microw. Wireless Compon. Lett. 15(3), 153–155 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

F. Zeng and J. P. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett. 18(7), 823–825 (2006).
[CrossRef]

S. Fu, W. D. Zhong, Y. J. Wen, and P. Shum, “Photonic, “Monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Y.-J Chiu, T.-H. Wu, W.-C. Cheng, F. J. Lin, and J. E. Bowers, “Enhanced Performance in Traveling-Wave Electroabsorption Modulators Based on Undercut-Etching the Active-Region,” IEEE Photon. Technol. Lett. 17(10), 2065–2067 (2005).
[CrossRef]

W. P. Lin and J. Y. Chen, “Implementation of a new ultrawide-band impulse system,” IEEE Photon. Technol. Lett. 17(11), 2418–2420 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (1)

Proc. IEEE International Conf. Commun. (1)

C. R. Nassar, F. Zhu, and Z. Wu, “Direct sequence spreading UWB systems: Frequency domain processing for enhanced performance and throughput,” Proc. IEEE International Conf. Commun. 3, 2180–2186 (2003).

Other (5)

X. Chen, and S. Kiaei, Monolithic distributed power supply for a mixed-signal integrated circuit,” in Proceedings of IEEE International Symposium on Circuit and Systems, pp.I-597-I-600 (2003).

Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Federal Communications Commission, Rep., ET-Docket 98–153, FCC02–48, 2002.

M. Ghavami, L. B. Michael, and R. Kohno, “Ultra wideband Overview,” in Ultra Wideband Signals and Systems in Communication Engineering, E.D. Wiley, ed. (West Sussex, U.K., 2004).

F. J. Tsu-Hsiu Wu, Lin, and Yi-Jen Chiu, “High-Extinction Ratio Wavelength Conversion by Electro-Absorption Modulator,” presented at the 2006 Conference on Optoelectronic and Microelectronic Materials and Device, Perth, Western Australia, 6–8 Dec. 2006.

P. A. Rizzi, Microwave Engineering Passive Circuits, (Prentice Hall).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic diagram is used for generating photonic UWB signal by SEAM. As the pump light excites the waveguide, an optical probe pulse is generated through XAM, simultaneously creating photocurrent pulses. The paths of “C” to “D” and “A” to “B” are the CPW load line and CPW feed line, where a short-resistor is used to reversely reflect the forward electrical wave (FEW).

Fig. 2
Fig. 2

The schematic plot of measurement setup using SEAM. The abbreviations of P.P.G., high-speed P.D., L.D., and M.Z.M stand for pulse-pattern-generator, high-speed photodetector, laser-diode, laser diode, and Mach-Zender modulator.

Fig. 3
Fig. 3

(a) The measured monocycle UWB optical pulse (probe) by converting the pump pulse in SEAM and the input optical-pump pulse (insert) from MZM modulator, (b) the corresponding microwave spectrum of the monocycle pulse after photodetection.

Fig. 4
Fig. 4

The plots of the converted probe light (λs, solid) and photocurrent (dash) pulses for 50Ω termination at CPW load and receiving ends. Both curves are normalized for comparison.

Fig. 5
Fig. 5

(a) The photogenerated current waveform of SEAM. (b) The superposed waveform by two polarity-reversed and delayed-time 50Ω-terminated photocurrent pulses (Fig. 4).

Metrics