Abstract

We have proposed and demonstrated an artificial medium consisting of arrays of circular metal rods embedded in a dielectric host, which holds a real metal behavior but the extracted effective plasma frequency is in near-infrared region. The electromagnetic responses of such medium and the retrieved effective material parameters have been particularly shown. In addition, an analytic model about effective plasma frequency is constructed by uniquely considering the skin effect and introducing the parameter-skin depth, whose predicting results are in well accordance with the FDTD simulation. This artificial material may open possibilities for many metal-based applications in near-infrared regime.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
    [CrossRef]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
    [CrossRef]
  5. N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  6. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
    [CrossRef]
  7. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
    [CrossRef] [PubMed]
  8. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  9. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  10. F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [CrossRef]
  11. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef] [PubMed]
  12. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
    [CrossRef]
  13. S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
    [CrossRef]
  14. M. Silveirinha and C. Fernandes, “A Hybrid Method for the Efficient Calculation of the Band Structure of 3-D Metallic Crystals,” IEEE Trans. Microw. Theory Tech. 52(3), 889–902 (2004).
    [CrossRef]
  15. S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75(3), 035102 (2007).
    [CrossRef]
  16. G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Opt. Lett. 32(5), 551–553 (2007).
    [CrossRef] [PubMed]
  17. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
    [CrossRef] [PubMed]
  18. D. R. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [CrossRef]
  19. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69(24), 241101 (2004).
    [CrossRef]
  20. L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009).
    [CrossRef]
  21. X. Wei, X. Luo, X. Dong, and C. Du, “Localized surface plasmon nanolithography with ultrahigh resolution,” Opt. Express 15(21), 14177–14183 (2007).
    [CrossRef] [PubMed]

2009

L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009).
[CrossRef]

2007

2005

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[CrossRef] [PubMed]

2004

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[CrossRef] [PubMed]

M. Silveirinha and C. Fernandes, “A Hybrid Method for the Efficient Calculation of the Band Structure of 3-D Metallic Crystals,” IEEE Trans. Microw. Theory Tech. 52(3), 889–902 (2004).
[CrossRef]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

2002

D. R. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

1998

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

1996

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Abram, R. A.

S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75(3), 035102 (2007).
[CrossRef]

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Andrew, P.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[CrossRef] [PubMed]

Barnes, W. L.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Belov, P. A.

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

Brand, S.

S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75(3), 035102 (2007).
[CrossRef]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dolling, G.

Dong, X.

Du, C.

L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009).
[CrossRef]

X. Wei, X. Luo, X. Dong, and C. Du, “Localized surface plasmon nanolithography with ultrahigh resolution,” Opt. Express 15(21), 14177–14183 (2007).
[CrossRef] [PubMed]

Durant, S.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Enkrich, C.

Fang, N.

N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Fernandes, C.

M. Silveirinha and C. Fernandes, “A Hybrid Method for the Efficient Calculation of the Band Structure of 3-D Metallic Crystals,” IEEE Trans. Microw. Theory Tech. 52(3), 889–902 (2004).
[CrossRef]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Kaliteevski, M. A.

S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75(3), 035102 (2007).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Kürzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Linden, S.

Liu, L.

L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Luo, X.

L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009).
[CrossRef]

X. Wei, X. Luo, X. Dong, and C. Du, “Localized surface plasmon nanolithography with ultrahigh resolution,” Opt. Express 15(21), 14177–14183 (2007).
[CrossRef] [PubMed]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Martín-Moreno, L.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Maslovski, S. I.

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

McPeake, D.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

O’Brien, S.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Shi, H.

L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009).
[CrossRef]

Silveirinha, M.

M. Silveirinha and C. Fernandes, “A Hybrid Method for the Efficient Calculation of the Band Structure of 3-D Metallic Crystals,” IEEE Trans. Microw. Theory Tech. 52(3), 889–902 (2004).
[CrossRef]

Smith, D. R.

D. R. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Sönnichsen, C.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Soukoulis, C.

D. R. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

Soukoulis, C. M.

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Sun, C.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Tretyakov, S. A.

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Wegener, M.

Wei, X.

L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009).
[CrossRef]

X. Wei, X. Luo, X. Dong, and C. Du, “Localized surface plasmon nanolithography with ultrahigh resolution,” Opt. Express 15(21), 14177–14183 (2007).
[CrossRef] [PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Xiong, Y.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, X.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Zhou, J. F.

Appl. Phys., A Mater. Sci. Process.

L. Liu, H. Shi, X. Luo, X. Wei, and C. Du, “A plasma frequency modulation model for constructing structure material with arbitrary cross-section thin metallic wires,” Appl. Phys., A Mater. Sci. Process. 95(2), 563–566 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

M. Silveirinha and C. Fernandes, “A Hybrid Method for the Efficient Calculation of the Band Structure of 3-D Metallic Crystals,” IEEE Trans. Microw. Theory Tech. 52(3), 889–902 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. Phys. Condens. Matter

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).
[CrossRef]

Microw. Opt. Technol. Lett.

S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: A quasi-static model,” Microw. Opt. Technol. Lett. 35(1), 47–51 (2002).
[CrossRef]

N. J. Phys.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Nano Lett.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Bio-molecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75(3), 035102 (2007).
[CrossRef]

D. R. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[CrossRef]

S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, “Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials,” Phys. Rev. B 69(24), 241101 (2004).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef] [PubMed]

Science

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306(5698), 1002–1005 (2004).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, X. Zhang, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Outline of the geometry under consideration. The basic geometrical parameters are rods period p, rod diameter d, and layer depth a.

Fig. 2
Fig. 2

Transmittances for TE mode (a) and TM mode (b) versus different layer numbers (d = 100nm, a = 300nm, and p = 600nm). (c) Snapshot of electric field at three different frequencies, f = 200, 216, and 240THz, respectively. The wave vector is towards horizontal direction, and a period boundary condition along H direction was selected.

Fig. 3
Fig. 3

Retrieved effective parameters of artificial structure with 3-layers rods. (a) effective refractive index, (b) effective impedance, (c) effective magnetic permeability, (d) effective electric permittivity. The real and imaginary parts of these complex parameters are shown as solid blue and dashed red curves, respectively. (d = 100nm, a = 300nm, and p = 600nm, layers number N = 3).

Fig. 4
Fig. 4

(a) Transmittances as a function of the tube thickness C. The cross-section of tube is depicted in the inset figure, geometrical parameters used in this simulation are: invariable outside diameter of tube (200nm), layer depth a = 300nm, tube period p = 600nm, and layers number N = 3. (b) Effective plasma frequencies versus tube thickness C by retrieving the calculated transmission and reflection data.

Fig. 5
Fig. 5

Comparison of effective plasma frequencies yielded by FDTD simulation, our analytic model and Pendry’s model. Purple solid line represents the simulation results, cyan dash line shows our model results, and pink dot line represents Pendry’s model results. (a = 300nm, P = 600nm layers number N = 3).

Fig. 6
Fig. 6

Transmittances for different rod periods, when d = 100nm, a = 300nm and layers number N = 3. Inset graph shows effective plasma frequencies versus rod period p.

Fig. 7
Fig. 7

Transmittances for different rods diameters, when a = 300nm, p = 600nm and layers number N = 3. In the inset, we show effective plasma frequencies versus rods diameter.

Fig. 8
Fig. 8

The effective plasma frequencies as a function of rod diameters as obtained in simulation and model with realistic dielectric host. The solid and dash lines represent the simulation and model results, respectively. (a = 300nm, p = 600nm and layers number N = 3).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ω p 2 = n ' eff e 2 ε 0 m eff
N ' = n ' 0 R exp ( R r ) / δ 2 π r d r = n ' δ 2 π ( R δ + δ exp ( R / δ ) ) = n ' δ 2 π r eff = n ' δ l eff
n ' eff = n ' δ l eff a p
A ( R ' ) = μ 0 δ l eff n ' e v 2 π [ ln ( R ' π b ) π R ' 2 2 b 2 + 1 2 ]
P = δ l eff n ' e A ( r eff ) = δ l eff n ' e μ 0 δ l eff n ' e v 2 π [ ln ( r eff π b ) π r eff 2 2 b 2 + 1 2 ] = m eff δ l eff n ' v
m eff = μ 0 l eff δ n ' e 2 2 π [ ln ( l eff 2 π b ) l eff 2 8 π b 2 + 1 2 ]
f p 2 = ( ω p 2 π ) 2 = c 0 2 2 π b 2 [ ln ( l eff 2 π b ) l eff 2 8 π b 2 + 1 2 ]
f p 2 = c 0 2 2 π b 2 ε r [ ln ( l eff 2 π b ) l eff 2 8 π b 2 + 1 2 ]

Metrics